Implicit Memory Management for SAC

Clemens Grelck and Kai Trojahner

University of Liibeck
Institute of Software Technology and Programming Languages
{grelck,trojahne}@isp.uni-luebeck.de

Abstract. While almost all functional languages rely on garbage col-
lection for implicit memory management, the needs of efficient array
processing are better suited by reference counting. The opportunities
to reclaim unused memory immediately and to implement functionally
sound array operations by destructive in-place updates turn out to be
essential for approaching the performance achieved by imperative lan-
guages.

In this paper we outline the realization of implicit memory management
in the functional array language SAC. Starting with basic schemes for
the introduction of memory management and reference counting instruc-
tions into SAC code, the emphasis is laid on a range of optimizations that
aim at reducing runtime overhead and exploiting memory reuse oppor-
tunities.

1 Introduction

Implicit memory management is an essential feature of functional programming
languages. The two basic approachess to organize the automatic reclamation
of memory — reference counting [2] and garbage collection [9] — were already
invented in the early years of computer science. Since then they have intensively
been studied and refined in many ways. For surveys see for example [11] and [1].

The basic idea behind reference counting is to augment any data object by
a reference counter, which keeps track of the number of conceptual copies. The
counter must be incremented and decremented as the data object is passed as
argument to functions. As soon as the reference counter is decremented to zero,
the data object can be de-allocated, and the associated storage may immediately
be reclaimed for further usage.

With a garbage collector memory is allocated by simply pushing a pointer
forward until all memory is exhausted or some limit is reached. If no further
allocation is possible, normal program execution is interrupted by a garbage col-
lection phase. The garbage collector identifies and tags all live data objects by
systematically traversing the heap starting from certain root addresses, e.g. ref-
erences on the runtime stack. Afterwards, all non-tagged data objects are con-
sidered garbage and removed.

Both methods have their advantages and disadvantages. Reference counting
incurs space overhead for storing the counter and time overhead for its manipu-
lation. De-allocation of a data object manipulates the counters of all referenced

data objects, which may lead to expensive recursive de-allocation cascades. Pos-
itive aspects of reference counting are that memory management overhead is
evenly distributed over the execution time of a program and storage is reclaimed
as soon as possible.

Garbage collection only reclaims storage if needed, but in that case may cause
long disruptive pauses in the execution of the program itself. Data objects are
only reclaimed after a potentially long zombie time increasing overall memory
demand. The complexity of the collection process is in the order of the size of
the life heap, not in the order of the space to be reclaimed, i.e., performance
degrades with high memory pressure. However, if memory is not too short and
data objects are frequently allocated and have short average life time, garbage
collection offers very space and time efficient implicit memory management.

Functional programs usually fall into the latter category. They predominently
process list- and tree-like data structures made up of large numbers of small data
objects connected by references. For good reasons almost all functional program-
ming languages rely on some kind of garbage collector for memory management.
However, the situation changes completely if not lists and trees are the prevail-
ing data structure but (large) arrays of numerical data. Efficient application of
garbage collection relies on keeping program interrupts as infrequent as possi-
ble. This inevitably leads to long zombie periods between the time a data object
becomes garbage and the time its storage is actually reclaimed. If heap space is
requested in large portions, zombie times may quickly become prohibitive.

In contrast, the disadvantages of reference counting are mostly avoided in
the context of arrays. As soon as array elements are unboxed, which anyways
is mandatory for performance reasons, expensive de-allocation cascades cannot
occur. Memory overhead for storing the reference counter associated with each
data object is negligible with respect to the average size of an array. Likewise, the
runtime overhead for manipulating the reference counter is small with respect
to the time required to compute the element values of an array.

Furthermore, knowing the exact number of conceptual copies of any data
structure at runtime exposes a significant opportunity for optimization. If an
argument to some operation is known to become garbage afterwards, the associ-
ated storage may be reclaimed immediately to accomodate the result, provided
that the operation is suitable for such a short cut. In addition to avoiding the
overhead incurred by a de-allocation/allocation cycle, this has the potential to
overcome or at least to mitigate the impact of the aggregate update problem [8].
Arrays may be updated destructively or in-place whenever the reference counter
indicates that this is save to do without violating the functional semantics. This
turns out to be a key feature for approaching the runtime performance of im-
perative code. Therefore, functional array languages like SISAL [3] or SAC [10]
employ reference counting instead of garbage collection.

In contrast to garbage collectors, which are only loosely connected to an
application program, reference counting requires tight integration into compiled
code. Memory allocation and de-allocation requests as well as reference counter
manipulating instructions must be inserted into compiled code with great care.

In the following, we present various compilation and optimization schemes for
this purpose. Although they have been developed in the context of SAC, they
are only specific to the setting of functional array processing, but do not rely on
any specific features of the language.

Since development of a correct reference counting scheme is even more dif-
ficult than doing explicit memory allocation/de-allocation in the right way, we
have split the process into several smaller tasks. In a first step, the purely func-
tional world of values (Val) is extended by two new categories that make the
notion of memory explicit: plain storage (Mem) and storage holding a value
(MemVal). Specific instructions are introduced that request pieces of memory
and connect values to storage. In a separate step, numbers of references are
inferred, and reference counter manipulating instructions are inserted into the
code. Both schemes are kept as simple as possible, deferring any kind of opti-
mization to subsequent steps.

Two different kinds of optimizations can be distinguished. To begin with,
superfluous reference counting instructions are eliminated in order to minimize
the overhead associated with keeping track of numbers of references. Afterwards,
potential candidates for immediate storage reuse are identified. In some cases,
a candidate can be adopted at compile time, but generally the decision which
candidate to take — if any — must be postponed until runtime. In addition,
update-in-place opportunities are analysed, and tailor-made code is generated.

The remainder of the paper is organized as follows. In Section 2, we define a
simplified core language of SAC called SAC ;;, which exhibits all features rel-
evant for memory management, but dispenses with any other details. Sections 3
and 4 introduce explicit memory allocation requests into SAC i programs and
describe basic optimizations on them. A scheme for adding reference counting
instructions is defined in Section 5. Sections 6 and 7 sketch out the range of
optimizations. Eventually, Section 8 draws conclusions and outlines directions of
future work.

2 SACin

SAC is a sophisticated functional array language. A comprehensive introduc-
tion can be found in [10]; case studies about programming style and runtime
performance are presented in [4, 6, 5]. However, when reasoning about aspects of
implicit memory management, many features of SAC turn out to be irrelevant or
to superfluously complicate the situation. Therefore, we define a core language
called SACini, which contains all features essential for memory management,
but not more. Fig. 1 shows a pseudo syntax definition of SACini-

Basically, a SAC,jn; Program is a sequence of potentially mutually recursive
function definitions. A function definition consists of a function name, a param-
eter list in brackets and a code block. In contrast to full SAC, the notion of
types is entirely omitted. A code block is a sequence of assignments followed
by a return-statement enclosed in curly brackets. This is equivalent to a nest-
ing of let-expressions with a subsequent goal expression mainstream functional

Program = [FunDef]*

FunDef =Id([Id[, Id [* |]) Block
Block = ExprBlock | CondBlock
EzxprBlock = { [Assign]* Return }
CondBlock = { [Assign]* Cond }

Return = return (Id) ;

Cond = if (Id) Block else Block

Assign = Id = Ezxpr;

Ezpr = Const | Id | FunAp | PrfAp | With

FunAp =>Id([1d], 1d]*])

PrfAp =>Prf([1d[, 1d[*])

With = with (Id) [Part]+ genarray (Id,Id)
Part = Generator : ExprBlock

Generator = (Id<=1d< Id)

Fig. 1. Syntax of SAC,ini

languages. Likewise, conditionals are introduced. In addition to constants and
identifiers, expressions may be applications of defined or of built-in functions.
Since individual properties of built-in functions are irrelevant for our presentation
of memory management, we do not elaborate on them. Furthermore, SACini
comes without nested expressions, a property which can easily be achieved by
simple preprocessing of SAC code.

Up to now, SAC i, is just a straightforward functional toy language. The
only array-specific construct we introduce here is a substantially simplified ver-
sion of SAC’s array comprehensions, called WITH-loops. A WITH-loop of the form

with (4v) ... genarray(shp, default)

defines an array whose shape is given by shp. Hence, shp must refer to an integer
vector. Note that in SAC i (just as in SAC) any expression denotes an array.
Arrays are represented by two vectors: a shape vector and a data vector. The
length of the shape vector defines the dimensionality or rank of the array while
each element specifies the array’s extent along the corresponding axis. The data
vector solely contains the array’s elements without any structural information.
In this sense, scalars are rank zero arrays with an empty shape vector and a
1-element data vector. Arrays can be nested as long as the whole array remains
representable by shape and data vector, i.e., all elements of an array must have
the same shape.

The elements of a WITH-loop-defined array are either set to the default value
or computed according to the specification given in one of the parts, depending
on its index position. Each part consists of a generator, which defines a set of

index positions, and an associated expression block, which determines the values
of array elements at index positions covered by the generator. In its simplest form
a generator (1b<=1v<ub) defines a rectangular index range delimited by a lower
bound vector 1b and an upper bound vector ub. The WITH-loop-variable iv
refers to the current index position; its scope is restricted to the corresponding
expression block. For reasons of simplification all generators of a single WITH-
loop must use the same WITH-loop-variable. This restriction is emphasized by
introducing the WITH-loop-variable right behind the key word with.

Multiple parts allow to define different array elements according to different
specifications. In order to ensure deterministic results, the index sets defined by
the various generators of an individual WiTH-loop must be pairwise disjoint.

3 Explicit memory allocation

While functional programs evaluate expressions in order to derive a value, ma-
chines compute results by executing sequences of state transforming operations.
Hence, a compiler for a functional programming language must introduce a no-
tion of memory during the compilation process.

In SAC,,ini, memory is introduced via a special memory language called
SACmem- SACmem distinguishes between the functionally pure values used in
SACpini so far and the memory that is used to store them. This leads to three
basic categories of variables. Val subsumes the values of SAC,;,i expressions
which are merely abstract description of arrays. Mem describes chunks of mem-
ory that can be used to store values. Finally, MemVal denotes the category of
memory containing a value.

alloc: Val — Mem
£fill: Val X Mem — MemVal
suballoc: Mem x Val — Mem
copy: MemVal — Val

Fig. 2. The four operations of SACmem

As depicted in Fig. 2, SACmem consists of four built-in functions defining
the operational behaviour of SAC ;,; programs. The operation alloc(shp)
allocates memory, where shp is an integer vector value describing the memory’s
shape. The shape may be known at compile time, but in general it is an ex-
pression that can be used to compute the shape at runtime. The £i11 operation
initializes memory with a value of the appropriate shape, yielding a MemVal. In
the context of SACmem, the WiTH-loop can be understood as closely related to
the £i11 operation. The WITH-loop fills an array by filling each of its elements
individually. This is expressed by the suballoc operation which yields the piece
of memory at the position of the index vector from the WITH-loop’s result array.

A compilation scheme for memory allocation in SAC i, is shown in Fig. 3. As
SACini has eager semantics, all right hand side expressions are evaluated before
being assigned to a left hand side identifier. Straightforwardly, memory allocation

[v=fCai, ..., an); || _ v=f(Cai, ..., an);
ALLOC | Rest :|:|_{ .ALLOC[Rest]

v = a;

[v = a;
ALLOC | pegt]]Z{ ALLOC| Rest]

v = £i11(¢, v');

Accoc| Y7]]:
L ALLOC [Rest]

v’ = alloc([1);
Rest

[v = prfC a1, ..., an);
ALLOC Rest]]

v' = alloc(shape(prf(ai,...,an)));
z{ v = £i11(prfC a1, ..., an), v');
ALLOC[Rest]
A = with (i)
(lby <= v < ub1) {
assignsi
return(resi);
}
ALLOC :
(lbp <= v < ubn) {
assignsn
return(resn);
}
genarray(shp, def);
Rest

(v = alloc(shape(lbl));
A' = alloc(shp +t+shape(def));
A = with (iv)
(1b1 <= v < ub1) {
ALLOC| assignsi]
subi = suballoc(A', iw);
sub; = £i11(copy(res1), subl);
return(subi);

¥

(lby <= v < ubn) {

ALLOC [assignsy]
subl, = suballoc(A', iv);
subp, = £ill(copy(resp), subyp);
return(suby,);

}

genarray(shp, def, A');

\ ALLOC[Rest]

Fig. 3. Compilation scheme for explicit memory allocation in SAC ;ni-

instructions must be inserted before an assignment whenever the evaluation of
the right hand side requires additional memory.

Assigning a constant scalar value to a variable needs one memory element.
Its shape is represented by the empty shape vector and hence, alloc([]) yields
memory of the required size. In all other cases an expression describing the de-
sired shape must be formed from the assignment’s right hand side. For all built-in
SAC ini functions this expression can be deduced by wrapping a copy of the right
hand side into an application of the shape function. In case of the WITH-loop
the results shape can be computed by concatenating its shape parameter to the
shape of the default element. Simply for technical reasons to facilitate specifi-
cations of subsequent transformation schemes, the identifier of the WiTH-loop’s
result memory is annotated as another parameter of the wiTH-loop. In addition
to the result array, memory for the index vector must be allocated. By definition,
its shape equals the boundary vectors’ shape. The wiTH-loop’s ExprBlocks are
compiled by recursively applying the allocation scheme. Afterwards, each block
is appended by an application of suballoc and a combination of £i1ll and copy
which initializes the elements memory with the computed value.

No allocation instructions are needed in front of applications of user defined
functions as these allocate memory an their own. The assignment of variables
does not require allocation either as it describes the identity of these two vari-
ables, meaning they actually share the same memory.

4 Optimizing SACnqem

Because of its local scope, the allocation scheme for WITH-loops introduces a
combination of £ill/copy operations at the end of each of the wiTH-loop’s
EzprBlocks. However, when the allocation of the copied array takes place inside
of the same expression block, copying can be avoided.

An optimization called IN-PLACE-COMPUTATION aims at computing the ar-
ray element’s value in the correct piece of the WITH-loop’s result memory. Its
compilation scheme can be seen in Fig. 4. The optimization consists in replac-
ing the initial allocation with the suballocation and eliminating the original
suballoc, £ill and copy combination.

5 Introducing reference counting instructions

The idea of reference counting is to keep track of the number of conceptual copies
of a data object by means of a special object attribute, the so called reference
counter. Once it becomes zero, the data object is no longer used and can be
cleared from memory.

Reference counting of SACmem is done by enriching the program with a
special reference counting language depicted in Fig. 5. The set_rc operation is
used to initialize an object’s reference counter. inc_rc increases a given data
object’s reference counter by a certain number. dec_rc(z, n) frees an object’s
memory if its reference counter equals n. Otherwise the counter is decremented

H A = with (iv) T
Clb <=1 < ub) {

res' = alloc(shp);

res = £ill(expr, res');

sub' = suballoc(A', iv);

sub = £i11(copy(res), sub');
return(sub);

IPC

}
u genarray(shp, def, A');

(A = with (iv)
(b <= v < ub) {

res' = suballoc(A', iv);
res = £ill(expr, res');
return(res);

¥

genarray(shp, def, A');

\

Fig. 4. Optimization scheme for In-Place Computation

by n. The pseudo operation adjust_rc is used to simplify the notation of the
reference counting scheme.

Reference counting inference can be done using the deduction system shown
in Fig. 6. Reference counting annotations are introduced for each function in-
dependently. The deduction system translates into a bottom-up traversal of a
function body. In order to gather the necessary information needed to annotate
the appropriate reference counting instructions, an environment is used which
associatively maps identifiers to integers.

Deduction starts with with the return statement of an EzprBlock. Here the
returned variable’s environment is initialized with one as by definition a function
returns an object with a reference counter of one. Consequently, the deduction
rule for the application of a user defined function adjusts the reference counter of
the returned variable v by Env(v)—1. The importance of assuming each returned
variable’s reference counter to be one becomes evident in case of Env(v) being
zero, meaning v is not used in Rest’. In this case, adjust_rc will transform into a
dec_rc statement which will possibly remove v from memory. As each parameter

free(x)

set_rc(z,n) : RC(z):=n

inc_rc(z,n) : RC(z) := RC(z) +n

dec_rc(z,n) : if RC(z) =n then free(z) else RC(z):= RC(z)—n
noop |n=0

adjust_rc(=, n) — {inc_rc(m,n) |n>0
dec_rc(z,—n) | n <0

Fig. 5. Reference counting instructions

of a function application consumes one conceptual copy of the argument, the
environment of each argument is increased by one. The deduction rule for the
application of £ill mimics this behaviour. Primitive function don’t consume
their arguments, they must consumed explicitly by means of a dec_rc statement.
Additionally, the filled memory’s reference counter is initialized with one in order

return(a); — return(a); |Env[a + 1]

Rest — Rest'|Env

v = f(a1,~- -,an);
v = fla1,...,an); . Envlv + 0]
H — .
Rest ad_]ulst_rc (v, Env(v) —1); [a: « Env(a:) + 1]
Rest
Rest —» Rest'|Env
. v = £fill(c,m);
v = £fill(c,m); . e Envv < 0]
H —_ .
Rest adJulst_rc(v,Env(v) 1); [m 1]
Rest
Rest —» Rest'|Env
v = £fill(prf(ai,...,an),m);
Rest
v = fill(prf(ai,-..,an),m); Envv « 0]
. adjust_rc(v,Env(v) —1); [ai — Env(ai) + 1]
dec_rc(ai, 1);

1
Rest' [m]

Rest —» Rest'|Env
m = alloc(shape);
m = alloc(shape) ; set_rc(m, 1);
s c 0 E «0
Rest adjust_rc(m,Env(m) — 1); nwlm]
Rest'

Rest —» Rest'|Env
v =a v =a
Rest — Rest’ Envla + Env(a) + Env(v)]

B — B'|Env
flai,...,an) {
f(al,---,an) { . i _ .
B . ac%Just_rc(a;, Env(ai) —1); Enw
} B

}

Fig. 6. Deduction system for reference counting inference.
(continued on next page)

' !
Bthen — Bihen|EnUthsn Belse ? Belse|Envslse

if (p) {
. dec_rc(p, 1);
zf 2 adjust_rc(v, Envipen — Env);
Bthen Béhen
E +— F 1
o e nolp Bno(p) +1)
° ;e dec_rc(p, 1);
} clae adjust_rc(v, Envese — Env);
élss
T
where

Env[v + Maz(Envihen(v), Enveise (V)| Envihen (v) = 0V Enverse = 0]
[v < Min(Envipen (v), Enveise (V)| Envipen(v) # 0 A Envege 7 0]

B; — B{|Envyin, Rest — Rest'|Env

A = with (w)
(b1 <= v < ub1) {
B
T

(by <= v < ubp) {
B,
}
genarray(shp, def, M);
Rest
A = with ()
(b <= v < ub1) {
adjust_rc(v, Envyith,);
B
}
: Envl[lb; + Env(lb;) + 1]
(lbn <= iv < ubn) { [ub; < Env(ub;) + 1]
adjust_rc(v, Envyiwm,); [shp « Env(shp) + 1]
— Bn [def «+ Env(def) + 1]
[
[

} 1w + Env(iv) + 1]
genarray(shp, def, M); v+ Env(v) +1
dec_rc(Ib;, 1); |32 : Envyitn; (v) # 0]

dec_rc(ub;, 1);

dec_rc(shp, 1);

dec_rc(def, 1);

dec_rc(v, 1);

dec_rc(v, 1); |3i: Envyiwm, (v) #0
Rest'

Figure 6: Deduction system for reference counting inference.
(continued from previous page)

to signal that the memory is actually used. Before the reference counter of newly
allocated memory can be adjusted (note that adjust_rc typically transforms
into noop here), it must be initialized with one using set_rc. As pointed out in
Section 3, an assignment like v = a identifies objects v and a. This means all
references to v are disguised references to a. Hence, Env(a) must be increased
by Env(v). The final deduction rule of a function is about annotating counting
instructions for the function parameters. Again, these are assumed to have an
initial reference counter of one.

Reference counting for conditionals is somewhat more challenging as the
numbers of references to variables in the two branches can differ. To overcome
this inequality both branches are balanced out by inserting additional reference
counting instruction at their beginning. Generally, it is more desirable to insert
inc_rc instead of dec_rc operations as the latter contain an additional condi-
tional. Hence, a good strategy is to perform reference counting inference in both
branches and take the minimum of both environments as the global environment
and put an inc_rc in front of the other branch. Unfortunately, this cannot be
done if one of the environments equals zero as this would not result in the needed
dec_rc instruction but in a noop. Thus, the maximum function must be used in
these cases to determine the global environment of a variable.

Finally, the WITH-loop is reference counted in a way such that externally the
parameters of the WITH-loop-construct and all the variables used inside the body
are consumed. As no variable defined outside the WITH-loop must be freed from
memory while evaluating the WITH-loop, the reference counters of all internally
used variables must be increased at the beginning of each block.

6 Optimizations on reference counting code

The additional instructions needed for reference counting may introduce serious
runtime overhead. In order to minimize this overhead, two techniques are applied
that aim at stripping out superfluous reference counting instructions.

The first optimization exploits the fact that primitive functions and WITH-
loops don’t consume conceptual copies of variables on their own, but rely on
dec_rc instructions to free these objects from memory. As an object cannot be
freed from memory before the last reference to it, all the dec_rc instructions in
between are redundant. These can be safely removed when the preceding inc_rc
is adjusted accordingly.

The second step of optimization fuses set_rc instructions with subsequent
inc_rc instructions such that reference counters are initialized with the correct
value right from the start. Fig. 7 shows an illustrative example in which these
techniques are applied.

7 Exploiting memory reuse

Besides allowing immediate deallocation of data objects, reference counting can
help to overcome the aggregate update problem [8]. This is possible because the

a’ = alloc([1);
set_rc(a’, 1);
a = fill(1, a’);
inc_rc(a, 3);
v’ = alloc([2]);
set_rc(v?’, 1);

a’ = alloc([1);
set_rc(a’, 2);
a = fill(1, a’);

v? = alloc([2]);
set_rc(v’, 1);

v = £fi11(vec(a, a), v?); v = fill(vec(a, a), v?);
dec_rc(a, 1);

dec_rc(a, 1);

r=f(v, a, a); r=f(v, a, a);

return(r) ; return(r) ;

Fig. 7. Example: Redundant reference counting instructions removal

reference counter always reflects the number of conceptual copies of an array.
A reference counter of one indicates that the array will be no longer needed
throughout the program and can be modified destructively. Again, support for
memory reuse is introduced via a set of special instructions augmenting the
syntax described so far. These instructions can be found in Fig. 8.

alloc_or_reuse: Val x Val x [MemVal]t — Mem
reuse: MemVal X Val — Mem
isreused: MemVal x Mem — Val

Fig. 8. Operations introduced to support reuse

alloc_or_reuse(re, shp, cand) is a replacement for an alloc/set_rc
combination enabling dynamic reuse. It checks at runtime whether the reference
counter of any of the reuse candidates given in cand equals one thus allowing the
arrays content to be updated destructively. If a candidate has this desired prop-
erty, it will be reused with its reference counter incremented by rc. Otherwise,
new memory of shape shp is allocated, and the associated reference counter is
initialized to rc.

In order for an array to be a reuse candidate, some conditions must be met.
First of all, the candiate must have the same shape as the memory that otherwise
would be allocated. Furthermore, the operation using the memory must only
access the array in a pointwise manner, which means that each new value of an
array element does only depend on the old value. Finally, it must only be tried
to reuse an array before the last reference to it which because of the reference
counting optimizations is always followed by a dec_rc operation.

Memory reuse can even be decided at compile time if in addition to all
the above mentioned requirements the corresponding allocation is located in the
current ExprBlock and the array has never been passed to a user defined function
in between. This is expressed by reuse(a, rc).

Once reuse candidates are annotated it is possible to create specialized code
that takes reuse into account in order to exploit possible data reuse. The pred-
icate isreused allows to dynamically choose the best code for a given reuse

situation. In the example given in Fig. 9 it is shown, how the knowledge about
memory reuse can avoid substantial runtime overhead.

A’= alloc_or_reuse(l,shp,B);
if (isreused(B, A’) {
A = with (iv)

(1bl <= iv < ubl) {
return() ;

}

(1b2 <= iv < ub2) {

A’= alloc_or_reuse(1,shp,B); res’= suballoc(A’,iv);
A = with (iv) res = fill(1l,res’);
(1bl <= iv < ubl) { return(res) ;
res’= suballoc(A’,iv); }
res = fill(B[iv],res’); genarray (shp,def,A’);
return(res) ; }
} = else {
(1b2 <= iv < ub2) { A = with (iv)
res’= suballoc(A’,iv); (1b1 <= iv < ubl) {
res = fill(1l,res’); res’= suballoc(A’,iv);
return(res); res = fill(B[iv],res’);
} return(res)
genarray(shp,def,A’); }

(1b2 <= iv < ub2) {
res’= suballoc(A’,iv);
res = fill(1l,res’);
return(res) ;

3

genarray (shp,def,A’);
}

Fig. 9. Example for exploiting memory reuse

8 Conclusion and future work

In this paper we have described code transformation schemes that introduce the
notion of memory into intermediate SAC code. Purely functional code is aug-
mented with instructions for memory allocation and administration of reference
counters. A range of optimization techniques is sketched out that aim at reduc-
ing reference counting overhead and at identifying opportunities for immediate
memory reuse and destructive realizations of array operations.

The various optimizations succeed in a substantial reduction of reference
counting overhead compared with an initial straightforward solution. Likewise,
exploitation of reuse opportunities turns out to be a key performance issue in
functional array processing. Unfortunately, only a few of the optimizations are
incorporated into the SAC compiler for the time being. Hence, a quantitative

analysis of the various optimizations’ impact on performance must be postponed
to future work. In addition to immediate implementation and experimentation
work, a long term goal is to combine the advantages of reference counting and
garbage collection in a unified memory management framework.

References

10.

11.

. Saleh E. Abdullahi, Eliot E. Miranda, and Graem A. Ringwood. Collection

Schemes for Distributed Garbage. In Yves Bekkers and Jacques Cohen, editors,
Proceedings of the International Workshop on Memory Management (IWMM’92),
St. Malo, France, volume 637 of Lecture Notes in Computer Science, pages 43-81.
Springer-Verlag, 1992.

George E. Collins. A Method for Overlapping and Erasure of Lists. Communica-
tions of the ACM, 3(12):655-657, 1960.

J.-L. Gaudiot, W. Béhm, T. DeBoni, J. Feo, P. Miller, and W. Najjar. The Sisal
Model of Functional Programming and its Implementation. In Proceedings of the
2nd Aizu International Symposium on Parallel Algorithms/Architectures Synthesis
(pAs’97), Aizu- Wakamatsu, Japan, March 1997., mar 1997.

C. Grelck. Implementing the NAS Benchmark MG in SAC. In Viktor K. Prasanna
and George Westrom, editors, Proceedings of the 16th International Parallel and
Distributed Processing Symposium (IPDPS’02), Fort Lauderdale, Florida, USA.
IEEE Computer Society Press, 2002.

C. Grelck and S.-B. Scholz. SAC — From High-level Programming with Arrays to
Efficient Parallel Execution. Parallel Processing Letters, 13(3):401-412, 2003.

C. Grelck and S.-B. Scholz. Towards an Efficient Functional Implementation of
the NAS Benchmark FT. In V. Malyshkin, editor, Proceedings of the 7th Inter-
national Conference on Parallel Computing Technologies (PaCT’03), Nizhni Nov-
gorod, Russia, volume 2763 of Lecture Notes in Computer Science, pages 230-235.
Springer-Verlag, Berlin, Germany, 2003.

C. Grelck, S.-B. Scholz, and K. Trojahner. With-Loop Scalarization: Merging
Nested Array Operations. In P. Trinder and G. Michaelson, editors, Proceedings
of the 15th International Workshop on Implementation of Functional Languages
(IFL’03), Edinburgh, Scotland, UK, Revised Selected Papers, Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany, 2004. Accepted for publi-
cation.

P. Hudak and A. Bloss. The Aggregate Update Problem in Functional Program-
ming Systems. In Proceedings of the 12th ACM Symposium on Principles of Pro-
gramming Languages (POPL’85), New Orleans, Louisiana, USA, pages 300-313.
ACM Press, 1985.

John McCarthy. Recursive Functions of Symbolic Expressions and their Compu-
tation by Machine. Communications of the ACM, 3(4):184-195, 1960.

S.-B. Scholz. Single Assignment C — Efficient Support for High-Level Array Op-
erations in a Functional Setting. Journal of Functional Programming, 13(6):1005—
1059, 2003.

Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Yves Bekkers
and Jacques Cohen, editors, Proceedings of the International Workshop on Mem-
ory Management (IWMM’92), St. Malo, France, volume 637 of Lecture Notes in
Computer Science, pages 1-42. Springer-Verlag, 1992.

