
Axis Control in SAC

Clemens Grelck1 and Sven-Bodo Scholz2

1 University of Lübeck
Institute of Software Technology and Programming Languages

grelck@isp.uni-luebeck.de
2 University of Kiel

Institute of Computer Science and Applied Mathematics
sbs@informatik.uni-kiel.de

Abstract. High-level array processing is characterized by the composi-
tion of generic operations, which treat all array elements in a uniform
way. This paper proposes a mechanism that allows programmers to direct
effects of such array operations to non-scalar subarrays of argument ar-
rays without sacrificing the high-level programming approach. A versatile
notation for axis control is presented, and it is shown how the additional
language constructs can be transformed into regular SaC code. Further-
more, an optimization technique is introduced which achieves the same
runtime performance regardless of whether code is written using the new
notation or in a substantially less elegant style employing conventional
language features.

1 Introduction

SaC (Single Assignment C) [19] is a purely functional programming language,
which allows for high-level array processing in a way similar to Apl [11]. Pro-
grammers are encouraged to construct application programs by composition of
basic, generic, shape- and dimension-invariant array operations, typically via
multiple intermediate levels of abstraction. As an example take a SaC imple-
mentation of the L2 norm:

double L2Norm(double[*] A)
{
return(sqrt(sum(A * A)));

} .

The argument type double[*] refers to double precision floating point num-
ber arrays of any shape, i.e., arguments to L2Norm can be vectors, matrices,
higher-dimensional arrays, or even scalars, which in SaC like in Apl or J are
considered 0-dimensional arrays. The same generality applies to the main build-
ing blocks *, sum, and sqrt. While * refers to the element-wise multiplication
of arrays, sum computes the sum of all elements of an argument array. Although
in the example sqrt is applied to a scalar only, sqrt in general is applicable to
arbitrarily shaped arrays as well.

Such a composite programming style has several advantages. Programs are
more concise because error-prone explicit specifications of array traversals are

R. Peña and T. Arts (Eds.): IFL 2002, LNCS 2670, pp. 182–198, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Axis Control in SAC 183

hidden from that level of abstraction. The applicability of operations to arrays
of any shape in conjunction with the multitude of layers of abstraction allows
for code reuse in a way that is not possible in scalar languages. However, when
it comes to applying such universal operations to parts of an array only, a more
sophisticated notation is required [19].

This paper is concerned with the special but frequently occurring situation
where an operation is to be performed on certain axes of arrays only. As an
example, Fig. 1 illustrates the various possible applications of L2Norm to different
axes of a 3-dimensional array.

L2Norm

L2Norm

L2Norm

L2Norm

L2Norm

L2Norm

L2Norm

Fig. 1. Different views of an array.

In the standard case, as shown at the top of Fig. 1, L2Norm is applied to
all elements and, hence, reduces the whole cube into a single scalar. However,
the same cube may also be interpreted as a vector of matrices, as on the left
hand side of Fig. 1. In this case, we would like to apply a reduction operation
like L2Norm to each of the submatrices individually, yielding a vector of results.
Similarly, the cube may also be regarded as a matrix of vectors. This view should
result in applying L2Norm to individual subvectors yielding an entire matrix of
results, as shown on the right hand side of Fig. 1. To add further complexity
to the issue, the latter two views additionally offer the choice between three
different orientations each.

In principle, such a mapping of an operation to parts of arrays in SaC can
be specified by means of so-called with-loops, the central language construct for
defining array operations in SaC. However, their expressiveness by far exceeds
the functionality required in this particular situation because the design of with-
loops aims at a much broader range of application scenarios. Rather cumbersome
specifications may be the consequence when this generality is not needed, as for
example in the cases shown in Fig. 1.

184 Clemens Grelck and Sven-Bodo Scholz

One approach to improve this situation without a language extension seems
to be the creation of a large set of slightly different abstractions. However, contin-
uously “re-inventing” minor variations of more general operations runs counter
the idea of generic, high-level programming. Providing all potentially useful vari-
ations in a library is also not an option because this number explodes with an
increasing number of axes and is unlimited in principle. Moreover, coverage of
one operation still does not solve the problem for any other.

Another potential solution may be found in additional format parameters.
Unfortunately, the drawbacks of this solution are manifold. Format arguments
may have to be interpreted at runtime, which mostly prevents code optimiza-
tions. Many binary operations are preferably written in infix notation, which
does not allow for an additional parameter. Last but not least, additional for-
mat parameters once again must be implemented for any operation concerned,
although the problem itself is independent of individual operations.

What is needed instead is a more general mechanism that — independent of
concrete operations — provides explicit control over the choice of axes of argu-
ment arrays to which an operation is actually applied. In this paper we propose
such a mechanism, which fits well into the framework of generic, high-level array
programming. It consists of a syntactical extension, called axis control notation,
a compilation scheme, which transforms occurrences of the new notation into
existing SaC code, and tailor-made code optimization facilities.

The remainder of the paper is organized as follows. Section 2 provides a very
brief introduction into SaC for those who are not yet familiar with the language.
In Section 3, we present the axis control notation. The compilation of axis control
constructs into existing SaC code is outlined in Section 4, while optimization
issues specific to the new mechanism are discussed in Sections 5 and 6. Finally,
some related work is sketched out in Section 7, and Section 8 draws conclusions.

2 SAC

The core language of SaC is a functional subset of C, extended by n-dimensional
arrays as first class objects. Despite the different semantics, a rule of thumb for
SaC code is that everything that looks like C also behaves as in C. Arrays are
represented by two vectors, a shape vector that specifies an array’s extent wrt.
each of its axes, and a data vector that contains all its elements. Array types
include arrays of fixed shape, e.g. int[3,7], arrays with a fixed number of di-
mensions, e.g. int[.,.], and arrays with any number of dimensions, i.e. int[*].

In contrast to other array languages, e.g. Fortran-95, Apl, or later versions
of Sisal [7], SaC provides only a very small set of built-in operations on arrays.
Basically, they are primitives to retrieve data pertaining to the structure and
contents of arrays, e.g. an array’s number of dimensions (dim(array)), its shape
(shape(array)), or individual elements of an array (array[index-vector]), where
the length of index-vector is supposed to meet the number of dimensions or axes
of array.

Axis Control in SAC 185

All basic aggregate array operations which are typically built-in in other array
languages in SaC are specified in the language itself using powerful mapping
and folding operations, the so-called with-loops. As a simple example take the
definition of the element-wise sqrt function:

double[*] sqrt (double[*] A)
{
res = with (. <= iv <= .)

genarray(shape(A), sqrt(A[iv]));
return(res);

} .

This function takes an array A of any shape as argument and computes a
new array res by means of a simple with-loop. The with-loop consists of two
parts, a so-called generator (preceded by the keyword with) and an operation
(preceded by the keyword genarray). The basic functionality is defined in the
operation part. In the given example, an array of the same shape as the array A
is to be generated (first expression within the operation part), and an element at
index position iv is computed by applying sqrt1 to the corresponding element
of A (second expression within the operation part). The generator part specifies
an index set to which the given element computation actually applies. The dot
symbols used within the generator part of the example are a shortcut notation
for the lowest and for the highest legal index vector, respectively. Hence, the
generator in fact covers the entire index range of A.

WithLoopExpr ⇒ with (Generator) [AssignBlock] Operation

Generator ⇒ Expr RelOp IdV ec RelOp Expr [Filter]
RelOp ⇒ < | <=
Operation ⇒ genarray (Expr , Expr) | ...

Fig. 2. Syntax of with-loop expressions.

As indicated by the (simplified) syntax of with-loops presented in Fig. 2,
with-loops in general are more flexible. The generator set can be refined to
rectangular index ranges specified by arbitrary lower and upper bounds, which
in turn can be further restricted by optional filters. This inherently introduces the
notion of a default definition for all those elements of the result array that are not
covered by the generator. Furthermore, several variants of mapping and folding
are available as operation parts, and an optional assignment block between the
two parts allows more complex element definitions within the operation part to
be abstracted out into local variables. However, in the context of this paper this
flexibility is not required. A more detailed introduction into SaC can be found in
[19]; a case study on a non-trivial problem investigating both the programming
style and the resulting runtime performance is presented in [8].

1 This seeming recursion is resolved by the type system of SaC; cf. [19].

186 Clemens Grelck and Sven-Bodo Scholz

3 Axis Control Notation

Having a closer look at the L2 norm example used to motivate the need for axis
control, it turns out that the desired behaviour basically is a 3-step process.
1. Split the argument array along selected axes into uniform subarrays.
2. Apply the operation, e.g. L2Norm, to each subarray individually.
3. Laminate the array of subresults to form the overall result.

Fig. 3 illustrates this 3-step process for the L2 norm example and a 1-dimensional
(top) as well as a 2-dimensional (bottom) splitting operation.

Split L2Norm Laminate

L2NormSplit Laminate

Fig. 3. Axis control as a 3-step process.

As a first step towards notational support for axis control we introduce a
generalized selection facility. As outlined in the previous section, array element
selection in SaC is specified as array[index-vector], where the length of index-
vector is supposed to meet the number of dimensions or axes of array. This
selection facility is generalized by allowing index values in one or several dimen-
sions to be left unspecified. Substituting elements of index-vector by single dots
allows for selection of all elements of array along the corresponding axes. As
illustrated in Fig. 4, the number of dimensions of the resulting value is identical
to the number of dots in index-vector. Leaving all dimensions unspecific makes
the selection facility an identity function. Of course, dots are only permitted in
array selections, not in expressions in general. These syntactical extensions and
their limitations are formally defined in Fig. 5.

k

i
j A[[i, j, k]]

k

i
j A[[. , j, k]]

k

i
j A[[i, . , .]]

k

i
j A[[., ., .]]

Fig. 4. Generalized array selection facility.

As a second step, we introduce a notation for lamination of subarrays, which
includes the replicated application of operations prior to the lamination itself.

Axis Control in SAC 187

The new notation is based on expressions of the form { idvec -> expr(idvec) }.
Basically, such set expressions define a function from indices, represented by a
so-called frame vector of identifiers (idvec), to values defined by the subsequent
expression. In some sense, the set notation resembles a ZF-expression without a
range specification or — in terms of SaC — a with-loop without a generator.
This observation raises the question of how the range of indices is determined
in the absence of an explicit specification. In fact, it is implicitly derived from
the (mandatory) occurrence of each element of the frame vector in a selection
operation within the subsequent expression. The shape of the array involved
then defines the range for this particular index.

Associating the frame vector with these ranges yields a set of index vectors.
For each element of this set the expression is evaluated and the resulting values
are laminated according to the frame vector. Hence, the overall result and value
of the entire set expression is characterized by a rank which equals the sum of
the the frame vector’s length and the rank of the expression.

Generalized selection facility and set notation form our axis control notation
since in conjunction they offer a concise solution to the problem of axis control.
For example, applications of L2Norm to submatrices of a cube can be written as
simple as { [j] -> L2Norm(A[[.,j,.]]) }; applying L2Norm to subvectors is
as straightforward as { [i,k] -> L2Norm(A[[i,.,k]]) }.

In both examples, the elements of the frame vector naturally occur in a
selection operation within the expression. Hence, the range can easily be derived
from the shape of the argument array A. The observation also illustrates why
we use the term notation in this context. The axis control notation allows for
shorter, more concise specifications in all those simple though frequent cases
where a range can be derived from corresponding selections and, hence, the
notational power of a full-fledged with-loop is not required.

As a reduction operation L2Norm reduces any subarray to a scalar. In general,
any relationship between the shapes of argument and result subarrays may occur.
The only restriction to the choice of operations here is uniformity, i.e., suitable
operations must map all argument subarrays to result subarrays of identical
shape. Otherwise, the subsequent lamination step would have to create an array
with non-rectangular shape, which is not supported by SaC.

Examples which benefit from the new axis control notation are manifold, e.g.,
matrix transposition may be written as { [i,k] -> Matrix[[k,i]] }, matrix
multiplication as { [i,k] -> sum(MatrixM[[i,.]] * MatrixN[[.,k]]) }.
Also purely structural array operations often benefit from axis control, e.g.,
the row-wise concatenation of a matrix with a vector can simply be written
as { [i] -> Matrix[[i,.]] ++ Vector } based on the vector concatenation
operator ++.

If row-wise matrix-vector concatenation can be written easily, what about
column-wise matrix-vector concatenation? Here, a limitation of axis control, as
described so far, becomes apparent. In all cases examined so far, lamination used
to be along the leftmost axis. However, column-wise matrix-vector concatenation
requires lamination along the second axis. To cover this and similar cases we

188 Clemens Grelck and Sven-Bodo Scholz

further extend our axis control notation by the free choice of lamination axes.
This is accomplished by allowing dot symbols to be used in the frame vector
of the set notation. As a consequence, column-wise matrix-vector concatenation
can be specified as { [., j] -> Matrix[[., j]] ++ Vector }.

Expr ⇒ ...

| [Expr [, Expr]*]
| Expr [Expr]
| Expr [SelV ec]
| { FrameV ec − > Expr }

SelV ec ⇒ [DotOrExpr [, DotOrExpr]*]
DotOrExpr ⇒ . | Expr

FrameV ec ⇒ [DotOrId [, DotOrId]*]
DotOrId ⇒ . | Id

Fig. 5. Syntactical extensions for axis control notation.

Fig. 5 summarizes the various syntactical extensions introduced with the axis
control notation and clarifies where dots may occur in program texts and where
not. However, there are restrictions on the use of set notations which cannot
elegantly be expressed by means of syntax. In all the examples presented so far,
each identifier introduced by the frame vector occurs exactly once within the
expression, which is directly in a selection operation. Consequently, ranges can
be determined without ambiguity. In general, restrictions are less severe. First,
the emphasis is on direct occurrence in a selection operation. For example, in the
set expression { [i, j] -> M[[i, N[[j]]]] } ranges for i and j are clearly
determined by the shapes of M and N, respectively. The indirect occurrence of
j in the selection on M is not considered harmful. Similarly, additional occur-
rences outside of selection operations as in { [i, j] -> M[[i, j]] + i * j }
are ignored. Multiple direct occurrences in selections on different arrays as in
{ [i, j] -> M[[i, j]] + N[[j, i]] } can easily be resolved by taking the
minimum over all potential ranges. This ensures legality of selection indices with
respect to the shapes of all arrays involved.

Only those set expressions in which elements of the frame vector do not
directly occur in any selection operation have to be rejected. For example, in
{ [i] -> M[[fun(i)]] } deriving a range specification from the shape of
M would require to compute the inverse of fun, which usually is not feasible.
Even simpler set expressions like { [i] -> M[[i - 1]] } are ruled out be-
cause their meaning is not obvious: Legal values for i would be in the range
from 1 up to and including shape(M)[[0]]. However, this contradicts to the
rule that indexing in SaC always starts at zero.

These observations lead to the rule: A set notation that is constructed ac-
cording to the syntax presented in Fig. 5 is considered legal, iff each identifier of
the frame vector occurs at least once directly within an array selection.

Axis Control in SAC 189

4 Translating Axis Control Notation into WITH-loops

The reason why the two new language features — generalized selection and set
notation — are referred to as “notations” stems from the observation that they
are hardly more than syntactic sugar for particular forms of with-loops. In fact,
their translation into with-loops can be implemented as part of a preprocessing
phase mapping full SaC into core SaC.

4.1 Translating Generalized Selections

Generalized selections directly correspond to with-loops over ordinary (dot-less)
selections. For example, the selection of the third column of a two-dimensional
array A, specified as A[[.,2]], can be implemented as

with (. <= [tmp_0] <= .)
genarray([shape(A)[[0]]], A[[tmp_0,2]]) .

The shape of the result equals the extent of A along the first axis, i.e., the number
of rows of A, and the elements are selected from all rows of A at column position
2 which refers to the third element each.

In general, an expression of the form expr[iv] can be translated into a with-
loop that ranges over as many axes as dot symbols are found in iv. The shape of
the resulting array is determined by the corresponding components of the shape
of the expression expr. A formalization of this transformation is presented in
Fig. 6. The transformation of an expression expr into an expression expr′ is

AC [[expr[iv]]] =

{
with(. <= ds <= .)
genarray(shp, expr[idx])

where
< ds , shp , idx > = DeCon iv 0

DeCon [] i
= < [] , [] , []>

DeCon [. , e1, . . ., en] i
= < [tmp i]++ ds , [shape(expr)[[i]]]++ shp , [tmp i]++ idx >

where
< ds , shp , idx > = DeCon [e1, . . ., en] i + 1

DeCon [expr0, e1, . . ., en] i
= < ds , shp , [expr0]++ idx >

where
< ds , shp , idx > = DeCon [e1, . . ., en] i + 1

Fig. 6. Compiling array decomposition into with-loops.

denoted by AC [[expr]] = expr′. It is assumed that this transformation is applied to
all subexpressions where axis control notation is used without explicitly applying
AC recursively to all potential subexpressions. SaC program code and meta
variables that represent arbitrary SaC expressions are distinguished by means
of different fonts: teletype is used for explicit SaC code, whereas italics refer
to arbitrary expressions.

190 Clemens Grelck and Sven-Bodo Scholz

The transformation rule is based on the computation of the three vectors
ds, shp, and idx, which determine the generator variable, the shape vector, and
the modified index vector of the generated with-loop, respectively. All three
vectors are computed from the index vector iv by means of a recursive function
DeCon. It traverses the given index vector and looks for dot symbols. Whenever
a dot symbol is encountered, new components are inserted into the generator
variable and the shape expression. Furthermore, the dot symbol of the index
expression is replaced with the freshly generated generator variable component.
The additional parameter i is needed for keeping track of the position within
the original index vector iv only.

4.2 Translating Set Notations
As shown in Section 3, the multiplication of two matrices M and N can be specified
as { [i,j] -> sum(M[[i,.]] * N[[.,j]]) }. Basically, this expression can
be translated into a with-loop by turning the frame vector, i.e. [i,j], into an
index generator variable and by turning the right hand side expression into the
body of a with-loop:

with (. <= [i,j] <= .)
genarray([shape(M)[[0]], shape(N)[[1]]],

sum(M[[i,.]] * N[[.,j]])); .

As explained in the previous section, the difficulty involved here is the deter-
mination of the result shape, i.e., [shape(M)[[0]], shape(N)[[1]]]. It has
to be derived from the direct occurrences of i and j within array selections on
the right hand side of the set notation. Since M[[i,.]] selects the ith row of M,
its maximum range is determined by the extent of M in the leftmost axis, i.e.,
shape(M)[[0]]. Likewise, the selection of the jth column of N limits the range
of j by shape(N)[[1]].

A formalization of this approach towards the compilation of the set notation
into with-loops is presented in Fig. 7. Two functions FindSels and CompExt
are used for computing the components sj of the result shape from the right
hand side expression expr. FindSels expects two arguments: an expression expr

AC [[{ [var0, . . ., varn] -> expr }]] =

{
with(. <= [var0,. . .,varn] <= .)
genarray([s0, . . ., sn], expr)

where
∀j ∈ {0, . . . , n} : sj = CompExt (FindSels varj expr)

FindSels var � . . . expr′[[e0,. . .,ei−1, var, ei+1,. . .,em]]. . . �
= [shape(expr′)[[i]]]

++ (FindSels var � . . . expr′[[e0,. . .,ei−1, 0, ei+1,. . .,em]]. . . �)
FindSels var expr

= []

CompExt [] = ERROR
CompExt [ext0] = ext0
CompExt [ext0,. . .,extk] = min(ext0, CompExt [ext1,. . .,extk])

Fig. 7. Compiling array construction into with-loops.

Axis Control in SAC 191

and a variable name var. It locates subexpressions of expr that consist of array
selections containing the given variable var. This is indicated by a pseudo pattern
notation � . . . expr′[expr′′]. . . � which is meant to match arbitrary expressions
that contain a subexpression of the form expr′[expr′′]. For each array selection
that contains the variable var, an according shape component selection is put
into a resulting list of expressions. Note here, that for each component of the
result shape such a list is computed. In the matrix multiplication example, all
these lists do contain a single element only.

The function CompExt finally creates the expressions of the shape compo-
nents from such lists. Empty lists indicate illegal programs as the corresponding
variables are not used directly within array selections at all. If a list contains a
single element only, this can be taken directly, as in the example. Multiple list
entries require to guarantee that none of the corresponding selections violates
array boundaries. To do so expressions are created that compute the minimum
of all list components at runtime.

So far, it has been assumed that the frame vectors contain variables only.
As a consequence, non-scalar right hand side expressions always constitute the
rightmost axes of the result arrays. Now, the scheme has to be extended to cope
with dot symbols in frame vectors. As these serve only one purpose, namely to
place the right hand side expressions freely within the result, set expressions that
contain dot symbols in their frame vectors can be transformed into nestings of
two dot-free set expressions: one for computing the results and another one for
accomplishing the intended transpose operation.

Applying this idea to the column-wise matrix-vector concatenation example,
the original specification { [.,i] -> M[[.,i]] ++ v } first is transformed into
{ [i] -> M[[.,i]] ++ v } which inserts the prolongated column vectors as
leftmost axis, i.e. as rows, of the result. Subsequently, the modified computation
is embedded into a simple matrix transpose which leads to an expression of the
form { [tmp 0,i] -> { [i] -> M[[.,i]] ++ v } [[i,tmp 0]] }.

The transformation of set notations that contain dot symbols in the frame
vector into a nesting of dot-free ones can be formalized as shown in Fig. 8. As-

AC [[{ iv -> expr }]] = { lhs -> { vs -> expr }[vs ++ds] }
where

< lhs , vs , ds > = Perm iv 0

Perm [] i
= < [] , [] , []>

Perm [. , v1, . . ., vn] i
= < [tmp i]++ lhs , vs , [tmp i]++ ds >

where
< lhs , vs , ds > = Perm [v1, . . ., vn] i + 1

Perm [var, v1, . . ., vn] i
= < [var]++ lhs , [var]++ vs , ds >

where
< lhs , vs , ds > = Perm [v1, . . ., vn] i + 1

Fig. 8. Resolving dot symbols on the left hand side of array constructions.

192 Clemens Grelck and Sven-Bodo Scholz

suming that the frame vector iv contains at least one dot symbol, a set notation
{ iv -> expr } first is turned into an expression { vs -> expr } where vs is
obtained from iv by stripping off the dot symbol(s). This expression is embedded
into a transpose operation { lhs -> { ...}[vs ++ds] }. The frame vector
lhs in this set notation equals a version of iv whose dots have been replaced
by temporary variables named tmp i with i indicating the position of the tem-
porary variable in lhs. The selection vector consists of a concatenation of the
“dot stripped” version vs and a vector ds that contains a list of the temporary
variables that have been inserted into the left hand side. This guarantees that
all axes referred to by the dot symbols of iv are actually taken from the leftmost
axes of { vs -> expr } and inserted correctly into the result.

5 Compilation Intricacies

As can be seen from applying the compilation scheme AC to the few examples
on axis control notation given so far, intensive use of the new notation typically
leads to deep nestings of with-loops. This contrasts strongly with the typical
structure of SaC programs so far. The effect of this change in programming
style can be observed when comparing the runtimes of direct specifications ver-
sus specifications that make use of axis control notation. A comparison of a
direct specification of the row-wise matrix-vector concatenation with the axis
control notation based solution on a Sun UltraSparc I for a 2000 x 2000 el-
ement matrix and a 500 element vector shows a slowdown by about 50%. For
the column-wise matrix-vector concatenation (same extents) the slowdown even
turns out to be a factor of 14! Since runtime performance is a key issue for
SaC, this observation calls the entire approach in question. Performance fig-
ures, which have been found competitive even to low-level imperative languages
[9,8,19], could only be achieved without using axis control notation.

A closer examination of the compilation process shows that the nestings
of with-loops generated by the transformation are not particularly apt to the
optimizations incorporated into the SaC compiler implementation sac2c2 so
far. The problems involved can be observed nicely with the column-wise matrix-
vector concatenation example. Starting with the expression

{ [.,i] -> M[[.,i]] ++ v }

the transformation scheme AC first eliminates the dots of the frame vector:

{ [tmp_0,i] -> { [i] -> M[[.,i]] ++ v }[[i,tmp_0]] } .

Then, both set notations are transformed into with-loops:

with (. <= [tmp_0,i] <= .) {
inner = with (. <= [i] <= .)

genarray([shape(M)[[1]]], M[[.,i]] ++ v);
} genarray(..., inner[[i, tmp_0]]) .

2 See <http://www.sac-home.org/>.

Axis Control in SAC 193

Note here, that the temporary variable inner is introduced for presentation
purposes only. It represents the value of the inner set notation.

Finally, yet another with-loop is substituted for the column selection. For
clarity of code, we again introduce a temporary variable col that holds the
selected column(s):

with (. <= [tmp_0,i] <= .) {
inner = with (. <= [i] <= .) {

col = with (. <= [tmp_0] <= .)
genarray([shape(M)[[0]]], M[[tmp_0,i]]);

} genarray([shape(M)[[1]]], col ++ vect);
} genarray(..., inner[[i, tmp_0]]) .

During optimization the with-loop-invariant computation of inner is lifted out
of the body of the outer with-loop and the with-loop-based implementation of
the concatenation operation ++ is inlined, which leads to a code structure of the
form:

inner = with (... [i] ...) {
col = with (... [tmp_0] ...) // col = M[[.,i]]

genarray(... M[[tmp_0, i]] ...);
res = with (... [j] ...) // res = col ++ v

genarray(... col[[j]] ... v[[j]] ...);
} genarray(... , res);

res = with (... [tmp_0,i] ...) // transpose
genarray(... inner[[i,tmp_0]] ...); .

At this stage, with-loop-folding [18], a SaC-specific optimization that allows
consecutive with-loops to be folded into single ones, is applied. It condenses the
column selection and the concatenation operation into a single with-loop:

inner = with (... [i] ...) {
res = with (... [j] ...) // res = M[[.,i]] ++ v

genarray(... M[[j, i]] ... v[[j]] ...);
} genarray(... , res);

res = with (... [tmp_0,i] ...) // transpose
genarray(... inner[[i,tmp_0]] ...); .

Unfortunately, the remaining with-loops cannot be folded any further, as [i]
is a 1-dimensional generator, whereas [tmp 0,i] is a 2-dimensional one. This
leads to the generation of C code which copies all array elements three times.
First, the individual vectors that represent the prolongated columns are built by
the inner with-loop. Then, these vectors are copied into the transpose of the
result, as represented by inner. Finally, the last with-loop realizes the transpose
required.

The major hindrance of further optimizations is the nesting of with-loops
as it resulted from the expression M[[.,i]] ++ v within the set notation. If
this nesting was converted into a single with-loop that operates on scalars, all
copying could be avoided. Rewriting the nesting as a single with-loop, we obtain

inner = with (... [i,j] ...)
genarray(... M[[j, i]] ... v[[j]] ...);

res = with (... [tmp_0,i] ...)
genarray(... inner[[i,tmp_0]] ...); ,

194 Clemens Grelck and Sven-Bodo Scholz

which can be folded into
res = with (... [tmp_0,i] ...)

genarray(... M[[tmp_0, i]] ... v[[tmp_0]] ...); .

As the resulting with-loop is identical to a direct specification, the runtime
overhead inflicted by the use of axis control notation is eliminated entirely.

6 Scalarization of WITH-loops

The observation that with-loops operating on scalars are compiled into more
efficient code than nested with-loops gives raise to a new optimization technique,
called with-loop-scalarization. It systematically transforms nested with-
loops into non-nested ones. Fig. 9 presents the basic transformation scheme SC.
The pattern which has to be looked for is a with-loop whose body is entirely

SC






with (lb1 <= iv1 < ub1) {
v1 = with (lb2 <= iv2 < ub2) {

v2 = expr(iv1, iv2);
} genarray(shp2, v2);

} genarray(shp1, v1)





 =




with (lb1++lb2 <= iv < ub1++ub2) {
iv1 = take(shape(lb1), iv);
iv2 = drop(shape(lb1), iv);
v = expr(iv1, iv2);
} genarray(shp1++shp2, v);

if iv1 �∈ FV (lb2) ∧ iv1 �∈ FV (ub2)

Fig. 9. Simple with-loop-scalarization scheme.

made up of another with-loop. The transformation itself turns out to be rather
simple: the vectors for the shape of the result and the bounds of the index
generator have to be concatenated. The body of the resulting with-loop basically
is identical to the body of the inner with-loop. It only requires the two index
vectors of the original with-loop nesting (iv1 and iv2 in Fig. 9) to be derived
from the new index generator variable by splitting it up accordingly.

However, an application of the transformation is not appropriate for all kinds
of with-loop nestings that match the given pattern. The problem involved here
is the fact that the bounds of the inner with-loop, i.e. lb2 and ub2, are lifted out
of the scope of iv1. Therefore, the transformation can only be applied if neither
lb2 nor ub2 depends on iv1.

Code generated from applications of our axis control notation typically match
the nesting pattern of Fig. 9. For example, both row-wise as well as column-wise
matrix-vector concatenation, as discussed in Section 3, benefit tremendously
from with-loop-scalarization. In both cases, with-loop-scalarization is
the key to compiling specifications based on axis control notation into codes
which are equivalent to direct implementations of the problems. As a conse-
quence, the performance degradations caused by using the axis control notation
reported in Section 5 — factors of 1.5 and 14 — are eliminated entirely.

Although the new axis control notation is a major source for nested with-
loops, these or similar intermediate code representations may occur for many

Axis Control in SAC 195

reasons. Hence, with-loop-scalarization as an optimization technique is in-
dependent of axis control. However, hand-coded with-loop nestings often have
slightly different forms. To enhance the applicability of this transformation, the

SC







with (lb1 <= iv1 < ub1) {
var = expr1(iv1);
v1 = with (lb2 <= iv2 < ub2) {

v2 = expr2(iv1, iv2, var);
} genarray(shp2, v2);

} genarray(shp1, v1)







=




with (lb1 <= iv1 < ub1) {
v1 = with (lb2 <= iv2 < ub2) {

var = expr1(iv1);
v2 = expr2(iv1, iv2, var);
} genarray(shp2, v2);

} genarray(shp1, v1)

SC







v1 = with (lb2 <= iv2 < ub2) {
v2 = expr(iv2);
} genarray(shp2, v2);

r = with (lb1 <= iv1 < ub1)
genarray(shp1, v1);







=




with (lb1 <= iv1 < ub1) {
v1 = with (lb2 <= iv2 < ub2) {

v2 = expr(iv2);
} genarray(shp2, v2);

} genarray(shp1, v1)

Fig. 10. Enhancing the applicability of with-loop-scalarization.

SC scheme is accompanied by additional rules for deriving the desired nesting
pattern from others. Two transformations to this effect are shown in Fig. 10. The
upper transformation rule moves assignments that precede the inner with-loop
into its body. The lower part demonstrates how entire with-loops can be moved
into others for generating with-loop nestings that can be scalarized.

In contrast to the basic scheme, which guarantees an improvement of the
code generated, these two transformations may introduce considerable overhead
as the computation of the expressions that are moved into the with-loop bodies
is duplicated. Whether or not this overhead actually leads to any runtime degra-
dation depends on the concrete code it is applied to. If the transformation does
trigger further optimizations such as with-loop-folding, the amount of over-
head may be easily amortized by the effect of these optimizations. Otherwise, if
the code remains almost unmodified, the back-end of the compiler may detect
the loop-invariant portions of the code and lift them back out again during the
final code generation phase.

7 Related Work

Apl [11], the origin of all array languages, addresses the issue of axis control only
in a very restricted way. Certain built-in operators provide an additional optional
parameter which allows selection of exactly one axis. For example, the reduction
operator / by default reduces the rightmost axis of an argument array A using an
appropriate binary built-in operation α: α/A. Reduction along the second axis,
provided that A is of suitable rank, can be written as α/[2]A. Although this
language feature of Apl is sometimes erroneously called dimension operator, it
clearly lacks the desired generality as it is limited to certain built-in operators
as well as to the selection of exactly one axis.

196 Clemens Grelck and Sven-Bodo Scholz

These shortcomings have been addressed in the further development of Apl.
IBM’s Apl-2, which largely influenced the current Apl standard [12], intro-
duced the notion of nested arrays [4]. Whereas arrays in Apl originally were
multidimensional data structures based on scalar elements, nested arrays im-
pose additional structure. Entire arrays can be “wrapped” by means of the new
enclose operator and behave just as scalars afterwards, i.e., they hide their in-
ternal structure. A complementary disclose operator allows for “unwrapping”
previously enclosed arrays.

The array language Nial [14,15] also uses the notion of nested arrays, but
comes without an explicit enclose/disclose mechanism. Instead the nesting of
arrays simply follows their construction. Full support for recursion allows for
elegantly traversing multiple nesting levels of arrays. Since the effect of normal
operations is limited to the outermost level, careful manipulation of nesting
levels may achieve similar effects as our axis control notation. However, repeated
re-organization of data structures for this purpose may be tedious and time-
consuming both in terms of programmer time as well as in terms of execution
time.

As an alternative to nested arrays, Sharp-Apl [2] and later J [13] proposed
the idea of function rank [5,10]. Rather than extending the data structure of ar-
rays, they introduced the rank operator (or rank conjunction in J terminology).
Basically, the rank conjunction is a built-in higher-order function, denoted by the
infix operator “"”, which provides a uniform and general concept for directing ef-
fects of any operation to a given number of either leading or trailing dimensions.
For example, L2Norm"2 A would apply L2Norm to each 2-dimensional subarray
of A individually and laminate the results. Provided that L2Norm is defined as
its SaC counterpart, this operation would be equivalent to the SaC axis con-
trol expression {[i] -> L2Norm(A[[i,.,.]])}. Compared with our approach
the rank conjunction is limited in two aspects. First, it only allows to address
consecutive leading and trailing axes of argument arrays. Any other choice of
axes requires explicit transposition of arguments beforehand. Second, it does not
allow for permutation of axes as axes are not identified by names.

So far, we have only sketched out work related to axis control. With-loop-
scalarization does not find its counterpart in conventional loop optimizations
(For surveys see [3,1].) as the setting is rather different. Conventional loops
correspond to a single axis of an array each, whereas the whole issue discussed in
Section 5 arises because by means of with-loops SaC does provide an inherently
multi-dimensional loop construct. Only this feature provides the opportunity to
merge nested loops into a single construct, whereas conventional languages do
not offer means to express multi-dimensional loops other than by nesting.

An example of a multidimensional loop construct other than with-loops are
the for-loops of Sisal [16]. However, according to [6] no optimizations similar to
with-loop-scalarization are performed by the Sisal compiler. One reason
may be the fact that Sisal 1.2 represents multidimensional arrays as nested
vectors. Although this data representation has its flaws [17], it helps here because
it avoids data copying of subarrays to a large extent.

Axis Control in SAC 197

8 Conclusions

This paper presents axis control notation as a general means for controlling the
application of generic array operations in a dimension-specific manner. Axis con-
trol notation gives explicit control over the axes to which operations are applied
as well as allowing the programmer to choose arbitrary dimensions for placing the
results of such applications. The advantages of this approach are demonstrated
in the context of the array programming language SaC. It is shown, that despite
the enhanced flexibility – when compared to well-known concepts such as the
rank conjunction in J – it can be implemented as a simple preprocessing step
rather than requiring support for a built-in higher-order operator.

Unfortunately, these appealing properties do not come for free. Both nota-
tions, generalized selection and set notation, impose some syntactical restrictions
which may be considered not very intuitive. The dot symbols used for general-
ized selection are put within the index vectors rather than being attached to
the selection operator. Although this elegantly allows for indicating the axes to
be selected, it may wrongly insinuate that dot symbols are legal vector entities.
In a similar fashion, liberating the programmer from the burden to specify the
index range of set notations leads to the restriction that the identifiers of frame
vectors have to be used literally within array selections. However, in the con-
text of axis control, these restrictions do not become apparent. Only if the axis
control notation is “misused” for specifying more sophisticated functionalities,
these restrictions may force the programmer to use with-loops instead.

As an offspring of the implementation of axis control notation, a new com-
piler optimization called with-loop-scalarization is proposed. It transforms
nested with-loops into non-nested ones, which allows programs that make use
of the new notation to be compiled into code that is identical to direct specifica-
tions that do without. This discloses another benefit of the proposed approach.
Since the new notation is transformed into ordinary with-loops, with-loop-
scalarization as an optimization technique is not specific to axis control nota-
tion, but it improves arbitrary SaC programs that contain nested with-loops.

Acknowledgements

We would like to thank Sébastien de Menten de Horne who inspired the devel-
opment of the axis control notation by his ideas on active and passive indices.
Furthermore, we are grateful to the people who helped improving this paper,
in particular to Robert Bernecky for sharing his Apl expertise, and to the four
anonymous referees.

References

1. R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, 2001. ISBN 1-55860-286-0.

198 Clemens Grelck and Sven-Bodo Scholz

2. I.P Sharp & Associates. SHARP APL Release 19.0 Guide for APL Programmers.
I.P Sharp & Associates, Ltd., 1987.

3. D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler Transformations for High-
Performance Computing. ACM Computing Surveys, 26(4):345–420, 1994.

4. J.P. Benkard. Nested Arrays and Operators — Some Issues in Depth. In Proceed-
ings of the International Conference on Array Processing Languages (APL’92),
St.Petersburg, Russia, APL Quote Quad, pages 7–21. ACM Press, 1992.

5. R. Bernecky. An Introduction to Function Rank. In Proceedings of the Interna-
tional Conference on Array Processing Languages (APL’88), Sydney, Australia,
volume 18 of APL Quote Quad, pages 39–43. ACM Press, 1988.

6. D.C. Cann. The Optimizing SISAL Compiler: Version 12.0. Lawrence Livermore
National Laboratory, Livermore, California, 1993. part of the SISAL distribution.

7. J.T. Feo, P.J. Miller, S.K.Skedzielewski, S.M. Denton, and C.J. Solomon. Sisal 90.
In A.P.W. Böhm and J.T. Feo, editors, Proceedings of the Conference on High Per-
formance Functional Computing (HPFC’95), Denver, Colorado, USA, pages 35–47.
Lawrence Livermore National Laboratory, Livermore, California, USA, 1995.

8. C. Grelck. Implementing the NAS Benchmark MG in SAC. In Proceedings of the
16th International Parallel and Distributed Processing Symposium (IPDPS’02),
Fort Lauderdale, Florida, USA. IEEE Computer Society Press, 2002.

9. C. Grelck and S.-B. Scholz. HPF vs. SAC — A Case Study. In A. Bode, T. Lud-
wig, W. Karl, and R. Wismüller, editors, Proceedings of the 6th European Con-
ference on Parallel Processing (Euro-Par’00), Munich, Germany, volume 1900 of
Lecture Notes in Computer Science, pages 620–624. Springer-Verlag, Berlin, Ger-
many, 2000.

10. R.K.W. Hui. Rank and Uniformity. In Proceedings of the International Conference
on Array Processing Languages (APL’95), San Antonio, Texas, USA, APL Quote
Quad, pages 83–90. ACM Press, 1995.

11. International Standards Organization. International Standard for Programming
Language APL. ISO N8485, ISO, 1984.

12. International Standards Organization. Programming Language APL, Extended.
ISO N93.03, ISO, 1993.

13. K.E. Iverson. Programming in J. Iverson Software Inc., Toronto, Canada, 1991.
14. M.A. Jenkins and J.I. Glagow. A Logical Basis for Nested Array Data Structures.

Computer Languages Journal, 14(1):35–51, 1989.
15. M.A. Jenkins and W.H. Jenkins. The Q’Nial Language and Reference Manual.

Nial Systems Ltd., Ottawa, Canada, 1993.
16. J.R. McGraw, S.K. Skedzielewski, S.J. Allan, R.R. Oldehoeft, et al. Sisal: Streams

and Iteration in a Single Assignment Language: Reference Manual Version 1.2. M
146, Lawrence Livermore National Laboratory, Livermore, California, USA, 1985.

17. R.R. Oldehoeft. Implementing Arrays in SISAL 2.0. In Proceedings of the 2nd
SISAL Users Conference, San Diego, California, USA, pages 209–222. Lawrence
Livermore National Laboratory, 1992.

18. S.-B. Scholz. With-loop-folding in SAC — Condensing Consecutive Array Op-
erations. In Proc. 9th International Workshop on Implementation of Functional
Languages (IFL’97), St. Andrews, Scotland, UK, selected papers, volume 1467 of
LNCS, pages 72–92. Springer, 1998.

19. S.-B. Scholz. Single Assignment C — Efficient Support for High-Level Array Oper-
ations in a Functional Setting. Journal of Functional Programming, 2003. Accepted
for publication.

	1 Introduction
	2 SAC
	3 Axis Control Notation
	4 Translating Axis Control Notation into {\sc WITH}-loops
	4.1 Translating Generalized Selections
	4.2 Translating Set Notations

	5 Compilation Intricacies
	6 Scalarization of {\sc WITH}-loops
	7 Related Work
	8 Conclusions
	References

