
A Compiler Backend

for Generic Programming

with Arrays

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

(Dr. rer. nat.)

der Technischen Fakultät

der Christian-Albrechts-Universität zu Kiel

Dietmar Kreye

Kiel

Juni 2003

1. Gutachter: Prof. Dr. Werner Kluge

2. Gutachter: Prof. Dr. Alex Shafarenko

Datum der mündlichen Prüfung: 9. Juli 2003

Contents

1 Introduction 1

2 SAC — Single Assignment C 9

2.1 Functional Subset of C . 9

2.2 Arrays in SAC . 11

2.2.1 Representation of Arrays 11

2.2.2 Primitive Array Operations 13

2.2.3 With-Loop Construct 14

2.2.4 Type System: Hierarchy of Array Types 16

2.3 Example: Determinant . 18

3 Compilation of SAC Programs into Non-Generic Code 23

3.1 Outline of the Compilation Process 23

3.2 Type Inference and Function Specialization 25

3.3 High-Level Code Optimization 29

3.4 Reference Counting Inference 30

3.5 Code Generation . 32

3.5.1 Array Representation 32

3.5.2 Compilation Rules . 33

3.6 Towards an Enhanced Compilation Scheme 41

4 Compilation of SAC Programs into Generic Code 45

4.1 Type Inference and Function Specialization 45

4.2 Resolution of Function Overloading 47

4.2.1 Wrapper Functions: An Example 48

4.2.2 Generation of Wrapper Functions 48

4.3 Code Generation . 60

4.3.1 Array Representation 60

4.3.2 Compilation Rules . 62

4.3.3 Intermediate Code Macros 74

i

ii Contents

4.4 About the Backend Implementation 80

5 Performance Evaluation 83

5.1 Conversion of Array Representations 84

5.2 Primitive Array Operations . 86

5.3 A Case Study: Determinant . 95

6 Conclusion 99

Bibliography 103

List of Figures

2.1 Core syntax of SAC programs (in BNF). 10

2.2 Representation of arrays. 12

2.3 Syntax of vector expressions (in BNF). 13

2.4 Syntax of with-loops (in BNF). 15

2.5 Syntax of array types (in BNF). 17

2.6 Hierarchy of array types. (Hasse diagram of the subtype relation.) 18

2.7 Computing the determinant of a two-dimensional array without

function overloading. 19

2.8 Computing the determinant of a two-dimensional array with

function overloading. 20

3.1 Outline of the compilation process. 24

3.2 SAC program after type inference and function specialization. . 27

3.3 SAC program after high-level code optimizations. 31

3.4 C representations for scalar and non-scalar SAC arrays. 33

4.1 SAC program after resolution of function overloading. 49

4.2 SAC program after high-level code optimizations. 50

4.3 Rudimentary decision tree for the function Det. 52

4.4 Labeled tree T Det

1 . 54

4.5 Labeled trees T Foo

1 and T Foo

2 . 55

4.6 Decision tree for the function Foo. 56

4.7 Wrapper code for the function Foo. 61

4.8 C representations for the different categories of SAC arrays. . . . 63

4.9 Intermediate code macros for accessing shape information. . . . 76

4.10 Implementation of the intermediate code macro ASSIGN (first

part). 78

4.11 Implementation of the intermediate code macro ASSIGN (second

part). 79

iii

iv List of Symbols

5.1 Time demand of converting the array representations on Ultra-

SPARC/Solaris. 85

5.2 Time demand of converting the array representations on i686/

Linux. 85

5.3 Time demand of the primitive operation dim on UltraSPARC/

Solaris. 90

5.4 Time demand of the primitive operation dim on i686/Linux. . . 90

5.5 Time demand of the primitive operation shape on UltraSPARC/

Solaris. 91

5.6 Time demand of the primitive operation shape on i686/Linux. . 91

5.7 Time demand of the primitive operation reshape on Ultra-

SPARC/Solaris. 92

5.8 Time demand of the primitive operation reshape on i686/Linux. 92

5.9 Time demand of the primitive operation sel on UltraSPARC/

Solaris. 93

5.10 Time demand of the primitive operation sel on i686/Linux. . . 93

5.11 Time demand of the primitive operation modarray on Ultra-

SPARC/Solaris. 94

5.12 Time demand of the primitive operation modarray on i686/Linux. 94

5.13 Time demand of computing the determinant of a 10×10 array

on UltraSPARC/Solaris. 97

5.14 Time demand of computing the determinant of a 10×10 array

on i686/Linux. 97

List of Symbols

∆(τ ,σ) . 53

Number of pairwise distinct types which are subtypes of τ as

well as proper supertypes of σ, e. g. ∆(float[+], float[+]) = 0,

∆(float[*], float[•]) = 2. If τ�σ, this number is undefined.

++ . 34

Operator which concatenates two vectors.

v
∣
∣
k

j
. 69

Part of the vector v = [v0, v1, v2, . . .] which contains all elements vi

with indices j ≤ i ≤ k, namely [vj, vj+1, . . . , vk].

〈a, b〉 . 53

Ordered pair of values a and b.

x :τ . 26

Variable x which has the type τ .

α . 16

Scalar type α; same as α[].

α[] . 16

Scalar type α; same as α.

α[sv 0, . . . , svn−1] . 17

Array type with base type α and shape vector [sv 0, . . . , svn−1].

α[
n

︷ ︸︸ ︷
•, . . . , •] . 17

Array type with base type α and dimension n; the shape is un-

known.

v

vi List of Symbols

α[+] . 17

Array type with base type α and unknown dimension > 0, i. e. non-

scalar type.

α[*] . 17

Array type with base type α and unknown dimension ≥ 0.

τ�σ . 26

τ is a subtype of σ; � denotes the (reflexive, transitive, and anti-

symmetrical) subtype relation.

τ�σ . 26

Negation of (τ�σ).

τ≺σ . 26

τ is a proper subtype of σ; is equivalent to (τ�σ) ∧ (τ 6=σ)

τ⊀σ . 26

Negation of (τ≺σ); is equivalent to (τ�σ) ∨ (τ=σ).

A{idx} . 30

Pseudo SAC expression generated by index vector elimination.

basetype . 47

Function which returns the base type of the given type, e. g.

basetype(int[2, 3]) = int.

mscs . 46

Function which returns the most specific common supertype of the

given set of types, e. g. mscs({float[2, 3], float[2]}) = float[+].

Refs(A) . 32

Number of references of the variable A.

TSCL . 16

Set of all scalar types (SCL ≡ scalar), e. g. int[] ∈ TSCL.

TAKS . 17

Set of all non-scalar types with known dimension and known extent

(AKS ≡ array of known shape), e. g. int[2, 3] ∈ TAKS.

TAKD . 17

Set of all non-scalar types with known dimension but unknown

extent (AKD ≡ array of known dimension), e. g. int[•,•] ∈ TAKD.

List of Symbols vii

TAUD . 17

Set of all types with unknown dimension and unknown extent

(AUD ≡ array of unknown dimension), e. g. int[*] ∈ TAUD.

viii List of Symbols

Chapter 1

Introduction

Scientific computing — sometimes referred to as number crunching — is one of

the most important and successful genres of computer science, used for instance

in statistics, in finance, or for the simulation of physical, chemical and indus-

trial processes. Typically, these applications involve fairly complex, non-uniform

operations on large matrices/arrays. In traditional problems, such as aerody-

namics or weather forecast, these arrays represent two- or three-dimensional

spaces. However, modern applications, e. g. quantum mechanics or finance,

require also higher dimensional arrays.

Scientific application programs usually require extremely long execution

times and operate on huge amounts of data. Therefore, a programming lan-

guage suitable for such applications should provide the means to specify code

with a high efficiency both in terms of time and memory demand. In order to

complete the computation in a certain time frame, it is often inevitable to em-

ploy multiple processors which simultaneously work on the solution of a given

problem, e. g. the weather forecast for the following day. Hence, languages with

support for concurrent program execution are most desirable. Other criteria for

the choice of a programming language are the expressive power with respect to

array operations, and the potential for code reuse as well as for maintenance of

existing programs. Such features facilitate less error-prone program develop-

ment which is of particular importance since in modern society computers are

often used for applications which for safety and security reasons have a high

demand for program correctness.

The current state of affairs is that the number crunching scene is almost

exclusively dominated by imperative programming languages like FORTRAN-

77 [ANSI78] or C [KR88]. Their low level of abstraction allows experienced

programmers to achieve utmost performance, but program development and

1

2 Chapter 1. Introduction

maintenance are time-consuming and error-prone. Implementing array opera-

tions requires problem-specific loop-nestings. Whenever the size or dimension

of the arrays involved changes, the loop boundaries or the loop nestings must

be modified as well. It is often rather difficult to make sure that all array ac-

cesses are legal and that no boundary violations will occur at runtime. More-

over, these languages handle arrays as references rather than values, i. e. array

modifications are performed as destructive updates irrespective of the number

of references that exist to the array. If an algorithm needs multiple instances of

an array, the array must be copied explicitly. In C, arrays could be allocated and

removed dynamically but it is the programmer’s duty to organize these opera-

tions correctly. As a consequence, programs written by unexperienced program-

mers often suffer from memory leaks or dangling array pointers. Furthermore,

traditional imperative languages are not very suitable for concurrent program

execution. Due to the state-based semantics, programs are inherently sequen-

tial, complex program analyses are therefore required to identify program parts

which can be executed in any chosen order without altering the meaning of the

program. Unfortunately, many features of imperative languages, e. g. call-by-

reference parameters, implicit side-effects via global variables, pointers in C,

or common blocks in FORTRAN, make this analysis extremely difficult and ineffi-

cient.

Some derivatives of FORTRAN — FORTRAN-90 [ABM+92] and HPF [HPFF97]

— address these problems by extending FORTRAN-77 by a large set of built-in

array operations which are applicable to arrays of any size and dimension, e. g.

element-wise extensions of scalar operations. While this allows for a more con-

cise, less error-prone program specification and facilitates concurrent program

execution within the boundaries of a single array operation, this approach does

not eliminate the fundamental drawbacks of imperative languages. Besides,

code becomes less generic if operations have to be applied to subsets of array el-

ements only. Although regularly structured cases are addressed by the so-called

triple notation, a step back to loops and scalar operations is often inevitable. In

either case, the code must be tailor-made for a concrete dimension. Moreover,

these languages provide no means of defining customized abstractions which

are of similar generality as the built-in primitives.

The approach taken by functional programming languages avoids many of

the shortcomings known from the imperative world. Their semantics is based

on the principle of context-free substitutions [CF58, Bare84, HS86, Hank94]

rather than on a stepwise modification of states. As a consequence, func-

tional programs are free of side-effects which considerably facilitates high-level

code optimizations. Moreover, the Church-Rosser-Property of the functional

3

paradigm guarantees determinacy of results irrespective of execution orders,

hence, functional languages are well-suited for implicit concurrent program

execution. Besides, many typical features of these languages [FH88, BW88,

Bird98, Read89], like implicit memory management, polymorphism, higher-

order functions, partial function applications, and lazy evaluation, allow for a

higher level of abstraction in program specifications. However, most functional

languages have only limited support for array processing.

At least HASKELL [Peyt03] and CLEAN [PE01a,PE01b] provide a sound inte-

gration of arrays into the functional domain [Gron97]. Besides primitive array

operations, like selection or arithmetics, they offer so-called array comprehen-

sions which are used to map scalar operations onto specified index intervals of

arrays. But unfortunately, the support is restricted to arrays of fixed dimension

only. Even worse, the absence of side-effects causes considerable problems with

regard to the efficient implementation of array operations. Conceptually, oper-

ations must consume their argument arrays and create new result arrays, rather

than overwriting existing ones, which is generally very costly both in terms of

time and memory demand [HB85].

Some languages like ML [MTH90] and its derivative OCAML [Lero02] cir-

cumvent this problem by implementing arrays as state-full data structures and

by providing side-effecting operations on them. Although this approach consid-

erably improves runtime performance, it sacrifices almost all the benefits of the

functional paradigm as far as arrays are involved, which in turn brings about

all the difficulties known from imperative languages.

A completely different approach is taken by the functional programming

language SISAL [MSA+85]. It does without most of the functional frills, as for

example polymorphism, higher-order functions, partial applications, and lazy

evaluation, since these features could introduce considerable slowdowns. It

provides an implicit memory management for arrays based on reference count-

ing [Cohe81, Cann89, FO95], which allows to implement array operations de-

structively whenever possible. Furthermore, its call-by-value semantics is ex-

ploited for sophisticated code optimizations [Cann89, CE95] and for the im-

plicit generation of concurrently executable code [SSM88,HB93,PAM93]. As a

result, the SISAL compiler [Cann93] generates code which outperforms equiv-

alent FORTRAN programs in a multiprocessor environment [OCA86,Cann92].

However, SISAL does not offer substantial advantages in terms of program-

ming techniques. As in imperative languages, the programmer is still asked to

specify array operations as iteration loops whose index ranges must be adapted

to array shapes. Moreover, SISAL supports one-dimensional arrays only. Higher-

dimensional arrays must be represented by nestings of such arrays, which de-

4 Chapter 1. Introduction

grades performance with growing dimension. Some of these shortcomings are

addressed in more recent versions of SISAL, i. e. SISAL 2.0 [BCOF91, Olde92]

and SISAL-90 [FMSD95, FO95] — however, none of them have ever been im-

plemented.

More general support for arrays is provided by array-oriented programming

languages such as APL [ISO84, ISO93], J [Burk96, Bern93], K [Kx98], and

NIAL [JJ93]. Originating from a mathematical notation for arrays [Iver62], the

main objective in the design of these languages is to offer means for specifying

algorithms on arrays in a very concise and abstract manner. They typically have

a call-by-value semantics with implicit memory management and give support

for shape-invariant programming, i. e. all operations/functions can be defined

in a generic way that allows arguments to have arbitrary dimension and size.

This generic approach of programming with arrays has a lot of benefits.

Being able to define new shape-invariant array operations allows the program-

mer to adjust the set of primitive array operations to the needs of any given

algorithm. Instead of problem-specific loop nestings, new and more generally

applicable operations may be defined, which subsequently may be combined

to express the desired functionality. As a consequence, programs become more

modular and easier to understand, which in turn increases code reusability and

makes program development less error-prone. However, overloading array op-

erations with many different combinations of array shapes, including scalars,

causes difficulties with respect to runtime efficiency, since it usually requires

dynamic typing and execution in an interpreting environment. Although some

optimization techniques have been invented [Brow85] and various attempts

have been made to compile such programs [DO86, Budd88, Bern97], runtime

efficiency is in many cases less than satisfactory.

SAC (short for Single Assignment C) is a more recent development of a

functional array processing language [Scho96, Scho03]. It is designed to com-

bine the advantages of APL and SISAL: Although SAC provides means to specify

truly shape-invariant array operations, the SAC compiler manages to generate

code whose runtime performance is competitive to those of high-performance

imperative languages such as FORTRAN-90 or HPF. SAC offers only a small set

of built-in array operations, more complex operations may be defined by means

of the so-called with-loop — a SAC-specific array comprehension. In contrast

to the for-loop in SISAL, the with-loop allows to define operations which com-

pletely abstract from the shapes of the arrays involved. Due to the expressive

power of the with-loop all primitive array operations known from other lan-

guages like APL or FORTRAN-90 can be implemented in SAC itself. Placed into

SAC libraries, these operations may serve as building blocks for real world ap-

5

plications, making their definitions more concise, less error-prone, and more

comprehensible.

Typically, such program specifications introduce many intermediate arrays.

In order to achieve competitive runtimes, powerful optimization techniques are

required that avoid the actual creation of these intermediate arrays whenever

possible. While in an imperative setting this task turns out to be difficult, it

can be readily done in SAC by applying so-called with-loop folding techniques

[Scho98b]. In [Scho98a, GS00] it is shown for several program examples that

with-loop folding can eliminate large numbers of intermediate arrays. In fact,

the resulting code is almost identical to what can be accomplished for programs

that directly implement the desired functionality in an element-wise manner

rather than benefiting from an APL-like programming style.

Prerequisite for the success of with-loop folding, as well as many other

high-level code optimizations which have been invented for SAC, is the so-

called static shape inference, which tries to infer the shapes of all arrays used

in a program. With knowledge of the shapes involved, it is even possible to

pre-evaluate some array operations at compile time (partial evaluation).

Unfortunately, inferring shapes statically is impossible in certain situations,

e. g. if external library functions are compiled separately or input data have un-

known shapes. Even worse, whenever a recursive function is applied to an ar-

gument whose shape is changing with each recursive call, shape inference may

be undecidable. For the time being, the SAC compiler rules out all programs for

which static shape inference fails. As a consequence, programs written in SAC

must be recompiled whenever the shape of input data changes, generic library

functions can not be compiled separately, and implementing certain algorithms

requires some awkward code design or is even impossible.

Another language which has been designed with static shape inference in

mind is FISH [Jay98, Jay99]. FISH is a higher order, polymorphic, ALGOL-

like functional language for array processing. The FISH compiler manages to

create code whose runtime demand is two orders of magnitude smaller than the

demand of equivalent HASKELL programs and two to four times smaller than

the demand of equivalent OCAML programs. But, similar to SAC, the expressive

power of the language is restricted significantly to ensure that the shape of

every array can be determined statically.

The aim of this thesis is to describe a new compiler backend that is based on

static shape inference but uses a general approach to eliminate the shortcom-

ings of recent compilers: In order to get utmost performance, shape-specific

code is generated whenever exact shapes can be inferred statically. However,

6 Chapter 1. Introduction

to preserve the full expressive power of the language, more generic code is cre-

ated if static shape inference fails. The language of choice for this new compiler

backend will be SAC.

The basic idea of this approach is to make use of a hierarchy of array types

with different levels of shape information. The most specific array types specify

an exact shape whereas more general types prescribe an exact dimension only

or contain no shape information at all. During the compilation process pro-

grams are typed as shape-specific as possible and subsequently the hierarchy

of array types is translated into a corresponding hierarchy of array representa-

tions.

Implementing such a hierarchy of array types is burdened with two major

problems. The first one is about resolution of function overloading. One of

the key features of SAC is the support for function overloading with respect to

shapes, i. e. SAC programs might contain shape-specific as well as non-shape-

specific instances of a single function. The semantics of SAC prescribes that for

each function application the most specific instance suitable for the arguments

must be used. If the compiler is capable of inferring all array shapes, resolving

this function overloading is trivial. Knowing the argument shapes of an appli-

cation, it is statically decidable which instance of the function has to be used.

But if static shape inference fails, the compiler must generate additional code

for the function application which dynamically chooses the matching instance

at runtime.

The second problem arises in the code generation phase of the compiler.

The compiler must generate code for a hierarchy of array types with different

levels of shape information. For this purpose, appropriate data structures must

be found to represent these shape informations. Runtime evaluations reveal

that it is more efficient to map the hierarchy of types to a corresponding hier-

archy of representations, instead of using a single representation only which is

suitable for all types. As a consequence, the compilation rules for the code gen-

eration must be parameterized with respect to types, i. e. the code generated

for a concrete language construct must be adapted to the actual array types

involved. Moreover, a shape-invariant argument may be applied to a shape-

specific operation (or the other way round). Hence, it may be necessary to

convert arguments from one representation into another. In order to get an

near-optimal runtime performance, the different array representations should

be designed in a way that minimizes the cost of these conversion operations.

To summarize, the work described in this thesis contributes the following to

the state of the art:

7

• It introduces a compilation scheme for transforming arbitrary shape-

invariant array operations into efficiently executable code. Shortcomings

of recent compilers — which either restrict the expressive power of the

language or generate code with unsatisfactory runtime performance only

— are avoided.

• It extends this compilation scheme by general support for function over-

loading with respect to shapes. Whenever the overloading can not be

resolved statically, additional code is generated which resolves the over-

loading at runtime.

• It provides an optimizing code generator. The code generator utilizes

multiple array representations which have been individually adapted to

the actual level of shape information. These measures lead to substantial

runtime improvements compared to equivalent code which operates on

a general array representation only.

• The compilation scheme described in this thesis has been fully integrated

into the existing SAC compiler. In order to demonstrate its effectiveness,

several runtime measurements have been performed on a Sun worksta-

tion and an Intel-based personal computer.

The remainder of this thesis is organized as follows: Chapter 2 gives a brief

introduction to the programming language SAC. However, several parts of the

language which are irrelevant for this thesis are omitted. Chapter 3 addresses

the compilation scheme of the recent SAC compiler which is restricted to shape-

specific code generation only. After a description of the major compilation

steps, the chapter identifies the flaws of this compilation scheme and develops

measures to eliminate them. The new compilation scheme which incorporates

these extensions is introduced in Chapter 4. Subsequently, Chapter 5 evaluates

the runtime performance of the code generated by the new compiler backend.

Finally, Chapter 6 concludes the thesis and outlines some directions for future

work.

8 Chapter 1. Introduction

Chapter 2

SAC — Single Assignment C

This chapter gives a brief introduction of the programming language SAC. Some

parts of the language which are irrelevant for the remainder of this thesis are

omitted, e. g. user-defined types, the module system [Grel96], and the class

system for states and I/O [Grel96, GS95]. A more detailed description of SAC

can be found in [Scho96,Scho03].

2.1 Functional Subset of C

The language kernel of SAC is a functional subset of the language C [KR88,

Schi93]. The basic idea is to stick as close as possible to the syntax of C, but to

restrict the set of legal programs in a way that allows a purely functional inter-

pretation. The semantics of the language is then given by a rather straightfor-

ward mapping into an applied λ-calculus [Bare84,HS86].

This functional semantics rules out all elements of C that cause side-effects,

i. e. global variables and pointers. As a consequence of dropping pointers, this

kernel includes scalar data types only. Moreover, the control flow instructions

break, continue, and goto have to be left out. For the remaining language

constructs of C a sound functional interpretation can be found. For instance,

assignments are considered nested let-bindings, and loops are internally trans-

formed into tail-end recursive functions [Scho96].

The core syntax of SAC programs is shown in Figure 2.1. As in C, a program

consists of a sequence of function definitions, among these a specific function

main which serves as starting point for the program execution. The syntax of

function definitions is adopted from C as well, but SAC functions may have mul-

tiple return values, thus, function headers may contain multiple return types,

9

10 Chapter 2. SAC — Single Assignment C

Program ⇒ [FunDef]* Main [FunDef]*

Main ⇒ int main ([void]) FunBody

FunDef ⇒ RetTypes Id ([Arguments]) FunBody

RetTypes ⇒ void | Type [, Type]*

Arguments ⇒ void | Type Id [, Type Id]*

FunBody ⇒ { [VarDec]* [Assign]* Return }

Vardec ⇒ Type Id ;

Assign ⇒ Let ;

| if (Expr) AssignBlock [else AssignBlock]

| do AssignBlock while (Expr)

| while (Expr) AssignBlock

| for (Let ; Expr ; Let) AssignBlock

AssignBlock ⇒ Assign | { [Assign]* }

Let ⇒ FunAp

| Id [, Id]* = Expr

| Id LetBinOp Expr

| Id LetUniOp | LetUniOp Id

FunAp ⇒ Id ([Expr [, Expr]*])

| Expr BinOp Expr

| UniOp Expr

Expr ⇒ FunAp | Id | Const | (Expr)

LetBinOp ⇒ += | -= | *= | /= | %=

LetUniOp ⇒ ++ | --

BinOp ⇒ + | - | * | / | %

| && | || | < | > | <= | >= | == | !=

UniOp ⇒ + | - | !

Return ⇒ return ([Expr [, Expr]*]) ;

Type ⇒ int | float | double | bool | char

Id ⇒ identifier

Const ⇒ constant value

Figure 2.1: Core syntax of SAC programs (in BNF).

2.2. Arrays in SAC 11

and return statements may contain multiple expressions. SAC explicitly dis-

tinguishes between integer and boolean values, hence, an additional base type

bool is added. Furthermore, the type declarations for local variables in func-

tion bodies are optional — missing declarations are inferred by the compiler

itself. Note here, that SAC supports function overloading [CW85], i. e. func-

tions may share the same name as long as they differ with respect to the types

or the number of their formal arguments.

2.2 Arrays in SAC

The SAC language kernel as described in the preceding section supports scalar

data types only. It is now extended by a high-level array concept which is

completely compatible with the functional paradigm, and which allows for an

array oriented, less error-prone programming style which significantly improves

program readability and code re-use.

2.2.1 Representation of Arrays

SAC supports the notion of multi-dimensional arrays as they are known from

array languages such as APL [Iver62,ISO84,ISO93], J [Burk96], or NIAL [JJ93].

All arrays are represented by two vectors: a data vector containing all array

elements in row-major order, and a shape vector which specifies the number of

elements per axis. For reasons of uniformity scalars are considered arrays with

empty shape. Figure 2.2 illustrates the array representation by means of four

examples.

Data and shape vector cannot be entirely freely chosen. Let A be a n-

dimensional array with shape vector sv = [sv 0, . . . , svn−1] and data vector

dv = [dv 0, . . . , dv l−1]. Then, the length l of the data vector must be

l =
n−1∏

j=0

sv j .

Subarrays or elements of the array A may be addressed by index vectors of

the set

{ [iv 0, . . . , ivm−1] | (0 ≤ m ≤ n) ∧ (∀j∈{0,...,m−1} : 0 ≤ iv j < sv j) } .

12 Chapter 2. SAC — Single Assignment C

A0 = 7

Dimension: 0

Shape vector: []

Data vector: [7]

A1 =





7

8

9



 = [7, 8, 9]

Dimension: 1

Shape vector: [3]

Data vector: [7, 8, 9]

A2 =

(
7 8 9

10 11 12

) Dimension: 2

Shape vector: [2, 3]

Data vector: [7, 8, 9, 10, 11, 12]

A3 =

7 8 9

10 11 12

1 2 3

4 5 6

Dimension: 3

Shape vector: [2, 2, 3]

Data vector: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Figure 2.2: Representation of arrays.

An index vector iv = [iv 0, . . . , ivm−1] selects the subarray with shape vector

[svm, . . . , svn−1] and data vector [dv p, . . . , dv p+q−1], where p and q satisfy

p =
m−1∑

j=0

(

iv j ·
n−1∏

k=j+1

svk

)

, q =
n−1∏

j=m

sv j .

The special cases (m = 0) and (m = n) specify the selection of the whole array

A and the selection of the single array element dv p respectively.

With these definitions at hand, a n-dimensional array in SAC may be defined

as an expression of the form

reshape([sv 0, . . . , svn−1], [dv 0, . . . , dv l−1]) ,

where reshape is a built-in primitive (see next subsection), all sv j are expres-

sions evaluating to integer scalars, and all dv j are expressions evaluating to

scalars of identical type. For scalars and vectors of scalars the specification of

the shape vector is optional:

reshape([], [dv 0]) ≡ dv 0

reshape([l], [dv 0, . . . , dv l−1]) ≡ [dv 0, . . . , dv l−1] .

2.2. Arrays in SAC 13

Expr ⇒ · · · | VectExpr

VectExpr ⇒ [[Expr [, Expr]*]]

Figure 2.3: Syntax of vector expressions (in BNF).

For convenience, the [. . .] notation of vectors may be used to specify higher-

dimensional arrays as well. In fact, such vectors are expressions, and any le-

gitimate SAC expression may be used to specify each of their elements (see

Figure 2.3). However, all elements of a vector must evaluate to arrays of iden-

tical shape and type. For instance, an array of shape [2, 3] may be considered

as a vector of shape [2] whose elements are vectors of shape [3]:

reshape([2,3], [1,2,3,4,5,6]) ≡ [[1,2,3], [4,5,6]] .

Let A and B denote arrays of shape [3]. Then, tupling and concatenation of A

and B may be specified as follows:

reshape([2,3], [A,B]) ≡ [A,B]

reshape([6], [A,B]) .

Note here, that arrays may be empty and that empty arrays can have mani-

fold shapes in which at least one component is 0:

reshape([0], []) ≡ []

reshape([1,0], []) ≡ [[]]

reshape([3,0,2], []) .

2.2.2 Primitive Array Operations

For the purpose of this subsection, let A and val denote arbitrary expressions,

and let iv and sv denote expressions that evaluate to vectors of proper length.

SAC provides a small set of built-in array operations which are defined as fol-

lows:

• dim(A) returns the dimension of A.

• shape(A) returns the shape vector of A.

14 Chapter 2. SAC — Single Assignment C

• sel(iv,A) returns a new array containing the subarray of A selected

by iv . If iv does not represent a legitimate index vector with respect to

A, the result of the operation is undefined.

• reshape(sv,A) returns a new array whose shape and data vector is

identical to sv and the data vector of A respectively. If the product of the

shape vector elements does not equal the length of the data vector, the

result of the operation is undefined.

• genarray(sv, val) returns a new array whose shape vector is identical

to the concatenation of sv and shape(val) . Its data vector is composed

of repeated copies of the data vector of val .

• modarray(A, iv, val) returns a new array which is identical to A ex-

cept for the subarray selected by iv which is set to val . If iv does not

represent a legitimate index vector with respect to A, or the shape of the

subarray does not equal the shape of val , the result of the operation is

undefined.

All these operations are generically defined, i. e. they can be applied to arrays

of arbitrary shape.

For the primitive operations sel and modarray exist alternative notations

which are familiar from the language C. The expression sel(iv,A) may be

written as A[iv] , and the assignment A = modarray(A, iv, val); may be

replaced by A[iv] = val; .

2.2.3 With-Loop Construct

More complex array operations than the built-ins introduced in the preceding

subsection may be defined in SAC by means of the with-loop. This language

construct typically defines an entire array along with a specification of how to

compute each array element depending on its index position. In this regard, the

with-loop is similar to array comprehensions in other functional languages, like

HASKELL or CLEAN, and to the for-loop in SISAL. However, with-loops in SAC

allow the specification of generic, i. e. truly shape-invariant, array operations.

The syntax of with-loops is outlined in Figure 2.4. A with-loop basically

consists of two parts: a generator part and an operation part. The generator

part defines a set of index vectors along with an index variable representing

elements of this set. Two expressions that must evaluate to vectors of equal

lengths define the lower and upper bound of a range of index vectors. This set of

2.2. Arrays in SAC 15

Expr ⇒ · · · | WithExpr

WithExpr ⇒ with (Generator) [{ [Assign]* }] Operation

Generator ⇒ Bound RelOp Id RelOp Bound [Filter]

Bound ⇒ . | Expr

RelOp ⇒ <= | <

Filter ⇒ step Expr [width Expr]

Operation ⇒ genarray (Expr , Expr)

| modarray (Expr , Id , Expr)

| fold (Id , Expr , Expr)

Figure 2.4: Syntax of with-loops (in BNF).

index vectors may be restricted by an optional filter to define grids of arbitrary

strides and widths. More precisely, let a, b, s , and w denote expressions that

evaluate to vectors of length n, and let aj , bj, . . . denote the j -th components

of these vectors. Then, the generator

(a <= iv < b step s width w)

defines an index variable iv that can be referenced within the with-loop and

whose domain is the following set of index vectors:

{ iv | ∀j∈{0,...,n−1} : (aj ≤ iv j < bj) ∧ ((iv j − aj) mod sj < wj) } .

The operation part specifies the operation to be performed for each element

of the index vector set. There are three different operations whose function-

alities are defined as follows. Let sv denote an expression that evaluates to a

vector, and let A and expr denote arbitrary expressions. Moreover, let foldop

be the name of a binary commutative and associative function with neutral

element neutral . Then,

• genarray(sv, expr) generates a new array whose shape vector is iden-

tical to the concatenation of sv and shape(expr) . Its elements are the

values of expr for all index vectors from the specified set, and arrays of

shape shape(expr) filled with zeros otherwise.

• modarray(A, iv, expr) generates a new array of the same shape as

A whose elements are the values of expr for all index vectors from the

specified set, and the values of A[iv] otherwise.

16 Chapter 2. SAC — Single Assignment C

• fold(foldop, neutral, expr) specifies a reduction operation. Starting

off with neutral , the value of expr is computed for each index vector from

the specified set and subsequently folded using foldop. Associativity and

commutativity of foldop guarantee determinate results irrespective of a

particular evaluation order.

To increase program readability, an optional block of local assignments may be

added between generation and operation part. This allows for the abstraction

of complex subexpressions from the operation part. Moreover, in generators

of genarray- and modarray-with-loops a dot (.) may replace one or both

bound expressions. Depending on its syntactical position, it either represents

the lowest or the highest legal index vector with respect to the shape of the

result.

The expressive power of the with-loop allows to implement all the prim-

itive array operations known from other languages like APL or FORTRAN-90

as library functions in SAC itself. The SAC standard array library provides,

among others, functions for concatenation of arrays, shifting/rotating opera-

tions, and data reduction like sum, product, minimum or maximum. More-

over, all scalar operations are extended to arguments of arbitrary shapes, e. g.

([1,2,3] - 1) evaluates to [0,1,2] .

2.2.4 Type System: Hierarchy of Array Types

For each base type (int, float, double, bool, char) SAC provides an entire

hierarchy of array types. The most specific array types specify an exact shape

whereas more general types prescribe an exact dimension only or contain no

shape information at all.

The syntax of array types in SAC is given in Figure 2.5. Basically, an array

type consists of a base type followed by a shape vector. If the shape is not

completely defined, the components of the shape vector may be replaced by

wildcards •, *, and +. The wildcard • means that the extent of a certain axis is

unknown. The wildcards + and * represent arrays with at least dimension 1 or

completely unknown dimension respectively.

This unbounded hierarchy of array types can be classified into four major

categories:

• Scalar arrays, i. e. α ≡ α[], where α denotes a base type. The set of all

these types is represented by TSCL (SCL ≡ scalar).

2.2. Arrays in SAC 17

Type ⇒ BaseType [*]

| BaseType [+]

| BaseType [• [, •]*]

| BaseType [Num [, Num]*]

| BaseType []

| BaseType

BaseType ⇒ int | float | double

| bool | char

Figure 2.5: Syntax of array types (in BNF).

• Non-scalar arrays with known dimension and known extent, e. g.

α[1], α[2, 3]. The set of all these types is represented by TAKS (AKS ≡
array of known shape).

• Non-scalar arrays with known dimension but unknown extent, e. g.

α[•], α[•,•]. The set of all these types is represented by TAKD (AKD ≡
array of known dimension).

• Arrays with unknown dimension and unknown extent, e. g. α[+],
α[*]. The set of all these types is represented by TAUD (AUD ≡ array

of unknown dimension).

The induced subtype relation — which is reflexive, transitive, and antisymmet-

rical — is depicted in Figure 2.6 as a directed tree (Hasse diagram). Vertices

of the tree represent types and an edge leading from τ to σ means that σ is a

subtype of τ . The dashed lines separate the four categories of array types.

At first glance, the types α[*] and α[+] for arrays with unknown dimension

seem to be rather artificial. Most user-defined functions tend to operate on

arrays of fixed dimension only, e. g. the function Det which is defined in the

following section. Nevertheless, being able to define truly dimension-invariant

functions is a very important feature of SAC. It allows to restrict the set of

built-in operations to a minimum, and to implement more complex primitive

array operations in SAC itself. The advantage of this approach is twofold. First,

it leads to a lean compiler layout since the compiler has to support only a small

number of built-in operations. Moreover, it gives the user the opportunity to

define new primitives or even to modify the existing ones.

18 Chapter 2. SAC — Single Assignment C

α[*]

α[+]

α[•] α[•,•] · · ·

α≡α[] α[0] α[1] · · · α[7] · · · α[0, 0] α[0, 1] · · · α[5, 3] · · ·

Figure 2.6: Hierarchy of array types.

(Hasse diagram of the subtype relation.)

2.3 Example: Determinant

Consider as an example computing the determinant of a two-dimensional array.

For arrays with shape [2, 2] this operation is very simple:

det

(
a b

c d

)

= ad − bc . (2.1)

Higher-order determinants may be computed recursively using the Laplace ex-

pansion (along the first column) [BSMM99]:

det(A) =
n−1∑

i=0

(−1)i · Ai0 · det (Ai0) , (2.2)

where A is an array of shape [n, n], Aij denotes the element of A at index

position [i, j], and Aij represents the array A without the i -th row and j -th

column.

This mathematical specification of the algorithm could be translated into a

single recursive SAC function as illustrated in Figure 2.7, where the two assign-

ment blocks of the conditional (lines 4 and 7) implement Equation (2.1) and

Equation (2.2) respectively.

Now, suppose that the programmer wants to add a non-recursive imple-

mentation for arrays of shape [3, 3], or that he wants to include support for

2.3. Example: Determinant 19

1 int Det(int[.,.] A)

2 {

3 if(shape(A) == [2,2]) {

4 ret = . . . ;

5 }

6 else {

7 ret = . . . Det(. . .) . . . ;

8 }

9

10 return(ret);

11 }

Figure 2.7: Computing the determinant of a two-dimensional array

without function overloading.

argument shapes [0, 0] and [1, 1]. In both situations he may modify the func-

tion Det accordingly. But this programming style has a serious conceptual flaw,

since each extension of the function requires its source code to be available.

This shortcoming could be avoided by using function overloading with respect

to shapes.

Figure 2.8 depicts an alternative implementation of the algorithm using

two instances of the function Det, one for each of the Equations (2.1) and

(2.2). The first instance (lines 1 – 4) is suitable for arrays of shape int[2, 2]
only, the second one (lines 6 – 15) applies to all two-dimensional integer arrays

with bigger shapes. Here, the explicit conditional of the first implementation is

replaced by the implicit overloading mechanism, which makes the code more

concise. Moreover, it is possible to add additional instances of Det for other

argument shapes without recompiling the existing ones.

The Laplace expansion is implemented using a fold-with-loop (lines 9 – 12)

whose generator defines the index vector set {[0, 0] ≤ iv ≤ [n−1, 0]}. For each

of these index vectors iv = [i, j] first the array Aij is generated by means of

another function Elim, and subsequently, the product (−1)i · Aij · det(Aij) is

calculated. The operation part of the with-loop computes the sum of all these

values.

Note here, that the function Elim is defined in a very generic way in or-

der to facilitate the reuse in a different context. The first argument A is not

necessarily a two-dimensional array but may have arbitrary shape. The sec-

20 Chapter 2. SAC — Single Assignment C

1 int Det(int[2,2] A)

2 {

3 return(A[[0,0]] * A[[1,1]] - A[[1,0]] * A[[0,1]]);

4 }

5

6 int Det(int[.,.] A)

7 {

8 sv = shape(A) - 1;

9 ret = with ([0,0] <= iv <= [sv[[0]],0]) {

10 B = Elim(A, iv);

11 val = pow(-1, iv[[0]]) * A[iv] * Det(B);

12 } fold(+, 0, val);

13

14 return(ret);

15 }

16

17 int[*] Elim(int[*] A, int[.] pos)

18 {

19 sv = shape(A) - 1;

20 ret = with (. <= iv <= .) {

21 new_iv = where((iv < pos), iv, (iv + 1));

22 val = A[new_iv];

23 } genarray(sv, val);

24

25 return(ret);

26 }

27

28 int main()

29 {

30 A = . . . ;

31 ret = Det(A);

32

33 return(ret);

34 }

Figure 2.8: Computing the determinant of a two-dimensional array with

function overloading.

2.3. Example: Determinant 21

ond argument pos should evaluate to a vector with length dim(A) . Then,

Elim(A, pos) generates a new array containing the elements of A where in

each axis i all elements with index pos[i] have been omitted. The imple-

mentation of Elim uses the standard library function where which is defined

as follows. Let cond , a, and b denote expressions that evaluate to vectors

of equal length n, where cond has the base type bool. That being the case,

where(cond, a, b) creates a vector of length n, and the i -th element of the

data vector is set to a[i] if cond[i] evaluates to true and set to b[i] oth-

erwise.

This example of a SAC program is well-suited to illustrate the basic problems

that arise when trying to compile generic SAC code into efficiently executable

code. Therefore, it will be used as a running example for the remainder of this

thesis.

22 Chapter 2. SAC — Single Assignment C

Chapter 3

Compilation of SAC Programs into

Non-Generic Code

This chapter describes the compilation scheme of the recent SAC compiler (revi-

sion v0.9.1). Section 3.1 briefly introduces the major steps in compiling generic,

shape-invariant SAC programs into non-generic and efficiently executable code.

Subsequent sections discuss the most important compilation phases in more

depth and demonstrate their effect by means of the SAC program introduced in

the preceding chapter (Figure 2.8). Finally, Section 3.6 identifies the flaws of

this compilation scheme and develops measures to eliminate them.

3.1 Outline of the Compilation Process

The major phases of the recent SAC compiler are shown in Figure 3.1. After

scanning and parsing a SAC program, some code simplifications are performed.

For instance, nested expressions are eliminated by adding temporary variables,

assignment operators (for example a += 2) are replaced by their regular coun-

terparts (a = a + 2), and for-, do-, and while-loops are transformed into tail-end

recursive functions. These measures reduce the variety of language constructs

and, hence, simplify subsequent compilation steps. Unfortunately, they also

reduce the readability of intermediate SAC code, therefore, the effects of these

simplifications will be ignored for the code examples given in the following

sections.

The next compilation phase infers the types of all local variables. In order

to achieve best possible potential for code optimizations, the compiler special-

izes all array types to specific shapes. As a consequence, generically defined

23

24 Chapter 3. Compilation of SAC Programs into Non-Generic Code

Scanner / Parser

Code Simplification

Type Inference / Function Specialization

Resolution of Function Overloading

High-Level Code Optimizations

Reference Counting Inference

Precompilation

Code Generation

Function Inlining

Array Elimination

Common Subexpr. Elimination

Variable Propagation

Constant Propagation

Constant Folding

With-Loop Folding

With-Loop Scalarization

Dead Code Removal

Loop Unrolling

Loop Unswitching

Loop Invariant Removal

Index Vector Elimination

Figure 3.1: Outline of the compilation process.

3.2. Type Inference and Function Specialization 25

functions have to be specialized for all required argument shapes. Whenever

this static shape inference fails, an error message is issued and the compilation

process is aborted — in such cases the programmer must add proper type dec-

larations or function specializations by hand. A more detailed explanation of

this compiler phase will be given in Section 3.2.

Since the compiler proceeds only if all array shapes have been inferred,

the next task — resolution of function overloading — is trivial. Knowing the

argument shapes of an application, it is statically decidable which instance of

the function has to be used.

Subsequently, the compiler applies several high-level code optimizations,

which are briefly described in Section 3.3. Many of these optimizations interact

with each other, e. g. having applied a particular optimization may enable an-

other one, therefore, the optimizations are performed repeatedly, as depicted

on the right hand side of Figure 3.1. This cycle terminates if either the code

does not change anymore or a predefined number of cycles has been performed.

SAC provides an implicit memory management based on reference counting

[Cohe81,Cann89,FO95], which identifies and removes garbage as soon as the

last access to it has been made. For this purpose, the compiler adds operations

to the SAC code that handle the reference counters at runtime (see Section 3.4).

The precompilation phase is inverse to the loop-transformations performed

during the code simplification phase. It converts tail-end recursive functions

back into loops, which is crucial for the runtime performance of the compiled

code.

Finally, the code generation is done. In order to liberate the compiler from

all hardware-specific particularities, C is used as target language for the compi-

lation. Because of the strong syntactical and semantical similarity between SAC

and C, the code generation is almost trivial for many language constructs. The

most important task of this phase is to find adequate array representations and

to generate optimized code for array operations. These issues will be addressed

in Section 3.5.

3.2 Type Inference and Function Specialization

Basically, the inference algorithm works as follows: Starting from the desig-

nated function main, the type inference system traverses all function bodies

from outermost to innermost, propagating shapes as far as possible. Whenever

a function application is encountered, it has to be determined which function

26 Chapter 3. Compilation of SAC Programs into Non-Generic Code

definition is relevant for it, i. e. which instance of a possibly overloaded func-

tion must be used to compute the result of the application. Then, the type of

the application equals the return type of this function instance. Furthermore, if

the relevant function instance is a generic one, it is specialized with respect to

the inferred argument shapes.

Take as an example the implementation of the function Det given in Fig-

ure 2.8 on page 20. Let the variable A in line 30 denote an array of type

int[3, 3]. In that case, for the application of Det in line 31 the second instance

is relevant and the type inference system generates a specialized int[3, 3] ver-

sion of this instance. Hence, the argument A in line 6 has shape [3, 3] and the

application in line 10 enforces the specialization of the function Elim. Subse-

quently, the compiler deduces that the variable B represents an array of shape

[2, 2], as a consequence, for the application of Det in line 11 the first instance

is relevant. The result of these transformations is depicted in Figure 3.2, with

all modified code fragments printed in a different color. Note that the compiler

has added proper declarations for the local variables and that all instances of

the function Det have unique names now. The latter is done by adding suffixes

representing the types of the arguments (e. g. __i_3_3 for int[3, 3]).

The inference algorithm as outlined above has some important implications

which will be formalized in the following. To do so, some notations have to

be defined: (τ�σ) denotes that τ is a subtype of σ, (τ≺σ) indicates that τ
is a proper subtype of σ, i. e. it is an abbreviation for (τ�σ) ∧ (τ 6=σ). The

formula (τ⊀σ) stands for the negation of (τ≺σ), and x :τ means that for

the variable x the type τ has been inferred.

Now, consider an application of an overloaded function f with N instances

to arguments x1, . . . , xm which have already been passed through the type

inference system and have produced types τ 1, . . . , τm:

f (x1 :τ 1, . . ., xm :τm) .

In order to infer the type of this application, it has to be determined which

instance of f is relevant for the application. Let

σk
1, . . .,σk

n f (k)(τ k
1 a1, . . .,τ k

m am) { Body } , k ∈ {1, . . . , N}

denote all the instances of f that occur in the given SAC program, where τ k
i

denotes the i -th argument type and σk
j denotes the j -th return type of the k -th

instance. A function instance f (k) is said to be relevant for the above application

3.2. Type Inference and Function Specialization 27

1 int Det__i_2_2(int[2,2] A)

2 { . . . }

3

4 int Det__i_3_3(int[3,3] A)

5 {

6 int[2] iv;

7 int[2,2] B;

8 int val;

9 int ret;

10

11 . . .

12 ret = with (. . . iv . . .) {

13 B = Elim__i_3_3(A, iv);

14 val = . . . * Det__i_2_2(B);

15 } fold(+, 0, val);

16

17 return(ret);

18 }

19

20 int[2,2] Elim__i_3_3(int[3,3] A, int[2] pos)

21 { . . . }

22

23 int main()

24 {

25 int[3,3] A;

26 int ret;

27

28 A = . . . ;

29 ret = Det__i_3_3(A);

30

31 return(ret);

32 }

Figure 3.2: SAC program after type inference and function specialization.

28 Chapter 3. Compilation of SAC Programs into Non-Generic Code

if and only if two conditions hold:

∀i∈{1,...,m} : τ i�τ k
i , and

¬
(
∃ l∈{1,...,N}\{k} : ∀i∈{1,...,m} : τ i�τ l

i�τ k
i

)
.

The first condition ensures that actual and formal arguments of the application

have compatible types, i. e. one is a subtype of the other. The second condition

excludes all instances which are redundant, since it is guaranteed that always

another instance l with more specific argument shapes can be found.

Without loss of generality, let

{
f (k) | k ∈ {1, . . . , R}

}
, R ≤ N

denote the set of relevant function instances. As a prerequisite for resolving

the function overloading uniquely, the cardinality R of this set should be 0 or

1. In the former case the compilation process is aborted with an error message

complaining about a missing function definition, in the latter case the type

inference is continued with a specialized version of f (1). Unfortunately, R may

indeed be greater 1. Consider as an example an overloaded function fun with

the following two instances given by the programmer:

int fun(int[.] A, int[2] B) { . . . }

int fun(int[2] A, int[.] B) { . . . } .

With regard to the argument A, the second instance has a more specific type

than the first one, with regard to the argument B, it is the other way round.

Consider an application of fun where for both arguments the type int[2] has

been inferred. Then, both of the two function instances are relevant for this

application and without additional criteria it is undecidable which one has to be

chosen, hence, the function overloading is ambiguous here. This problem could

be solved by introducing different priorities for different argument positions,

but then, the semantics of SAC programs would depend on the order of the

function arguments. To avoid confusion about the overloading mechanism,

instances k and l with such argument types — compatible types in all argument

positions i , more specific type in a first argument position i1, and less specific

type in a second argument position i2 — are ruled out:

¬
(

∃ k,l∈{1,...,N} :
(
∀i∈{1,...,m} : τ k

i �τ l
i ∨ τ k

i �τ l
i

)
∧

(
∃ i1∈{1,...,m} : τ k

i1
�τ l

i1

)
∧
(
∃ i2∈{1,...,m} : τ k

i2
≺τ l

i2

))

,

3.3. High-Level Code Optimization 29

For the same reason, no pairwise distinct function instances should have iden-

tical argument signatures:

¬
(
∃ k,l∈{1,...,N};k 6=l : ∀i∈{1,...,m} : τ k

i =τ l
i

)
.

Under these conditions, it is guaranteed that the function overloading can be

resolved uniquely, and the type of the j -th return value of the given application

is equal to the corresponding return type σ1
j of the relevant function instance.

3.3 High-Level Code Optimization

The SAC compiler performs several high-level code optimizations, most of

which are well-known in compiler design [ASU86, BGS94, Appe98, AK02,

Cann93]. Of particular interest, however, are four SAC-specific optimizations

which try to get rid of arrays whenever they can either be entirely avoided or

be replaced by scalars:

• With-loop folding eliminates intermediate arrays by transforming con-

secutive with-loops into single ones. This optimization technique is ap-

plicable even to with-loops which specify non-identical index vector sets

in their generator parts. Such folding results cannot be expressed by a

single with-loop, therefore, the SAC compiler internally uses a general-

ized version of with-loops that allows an arbitrary number of generator/

operation pairs to be specified. More information about with-loop fold-

ing can be found in [Scho98b].

• With-loop scalarization eliminates intermediate arrays by transform-

ing nested with-loops into non-nested ones. This optimization is par-

ticularly useful in the context of axis control [GS03] — a mechanism

to focus the effects of array operations on (non-scalar) subarrays of

higher-dimensional arrays, e. g. computing the element-wise, row-wise,

or column-wise sum of a two-dimensional array.

• Array elimination replaces small arrays by sets of scalars, which in turn

can be compiled into much more efficiently executable C code.

• Index vector elimination tries to replace index vectors by scalar off-

sets into data vectors. For example, let A denote an array of shape

[3, 3]. Then, the expression A[[2,1]] selects the element at position

30 Chapter 3. Compilation of SAC Programs into Non-Generic Code

(2 · 3 + 1) of the data vector. Therefore, this expression may be replaced

by A{2*3+1} , where the curly brackets {·} signify that a scalar offset

rather than an index vector is used for the selection.

Note here, that the success of these optimizations critically depends on the

static shape inference. The more specific the inferred array shapes the better is

the effect of these optimizations.

The impact of this compiler phase on the example program is demonstrated

in Figure 3.3. It turns out that the functions Elim__i_3_3 and Det__i_2_2

have been removed after inlining them. Moreover, the remaining function

Det__i_3_3 merely consists of simple arithmetical operations on scalars —

all complex array operations, loops, and index vectors have been eliminated.

In fact, this function represents a direct implementation of the Sarrus’ rule for

computing 3×3-determinants [BSMM99].

3.4 Reference Counting Inference

In SAC arrays are treated as values, e. g. the same array may be referenced

several times without loss of referential transparency. With regard to code

generation, the most important objective is to avoid superfluous creation and

copying of arrays, in order to generate code with a competitive runtime effi-

ciency. This difficulty can be addressed by means of the so-called reference

counting [Cohe81,Cann89,FO95] technique.

From a conceptual point of view multiple references of an array signify

the existence of several copies. The basic idea of reference counting is to use

virtual copies (pointers) rather than explicit copies of such an array. Only if

one of these virtual copies needs to be modified, a real copy must be created.

To keep track of the number of active references at runtime, for each array a

reference counter is provided. Upon creation of an array it is initialized with the

number of references in the current code block. Whenever a function is applied

to an array, the corresponding reference counter is incremented by the number

of references in the function body and subsequently decremented by 1. The

increment represents the virtual copies of the array substituted in the function

body, and the decrement represents the virtual copy which has been consumed

by the function application.

The compiler has to insert these reference count operations during code

generation. For this purpose, the compilation scheme makes use of an abstract

function Refs(A) which returns for each variable A occurring on the left hand

3.4. Reference Counting Inference 31

1 int Det__i_3_3(int[3,3] A)

2 {

3 . . . /* variable declarations */

4

5 A00 = A{0*3+0}; /* A[[0,0]] */

6 A01 = A{0*3+1}; /* A[[0,1]] */

7 . . .

8 A22 = A{2*3+2}; /* A[[2,2]] */

9 val1 = 1 * A20 * (A01 * A12 - A11 * A02);

10 val2 = -1 * A10 * (A01 * A22 - A21 * A02);

11 val3 = 1 * A00 * (A11 * A22 - A21 * A12);

12 ret = val1 + val2 + val3;

13

14 return(ret);

15 }

16

17 int main()

18 {

19 int[3,3] A;

20 int ret;

21

22 A = . . . ;

23 ret = Det__i_3_3(A);

24

25 return(ret);

26 }

Figure 3.3: SAC program after high-level code optimizations.

32 Chapter 3. Compilation of SAC Programs into Non-Generic Code

side of an assignment or in the argument list of a function definition the number

of references to it. This information is inferred in a separate compilation phase

called reference counting inference.

A naive implementation of reference counting would increment and decre-

ment the counters on every occurrence of a program variable. To avoid the

ensuing runtime overhead wherever possible, the SAC compiler performs sev-

eral reference count optimizations, which have been invented in the context of

SISAL [SS88, Cann89]. However, as these optimizations are irrelevant in the

context of this thesis, they will not be looked at.

3.5 Code Generation

In the final compilation phase the optimized and reference counted SAC code

is transformed into ANSI C code. An important issue in this context is to find

an appropriate C representation for SAC arrays, i. e. to translate the variable

declarations of SAC programs into proper C declarations.

3.5.1 Array Representation

As a result of ruling out dynamically shaped arrays during compilation, the com-

piler backend needs to support arrays of known shapes only. In order to avoid

unnecessary overhead, arrays that are identified as scalars are represented in C

by scalar values as well. Other SAC arrays are uniquely defined by means of a

shape vector and a data vector. In practice, the shape vector will hardly contain

more than a few elements, and can therefore be implemented in C by a set of

constant scalars rather than a vector.1 Furthermore, a reference counter (short:

rc) for the implicit memory management is needed. For convenience, the array

representation provides an additional constant representing the size of the data

vector.

Figure 3.4 illustrates the array representation by means of two examples.

A scalar SAC variable A is simply translated into a scalar C variable of the

same name. But if A denotes a two-dimensional array, six C variables have

to be declared — the constants A_dim, A_size, A_sv0, and A_sv1 contain

the shape information, the variables A_rc and A_data represent the reference

counter and the data vector respectively.

1Arrays with small data vectors have already been eliminated during the high-level code

optimizations (array elimination).

3.5. Code Generation 33

Decl. in SAC Declaration in C

α[] A; α A;

const int A_dim = 2;

const int A_size = 12;

const int A_sv0 = 4;
α[4, 3] A;

const int A_sv1 = 3;

int *A_rc;

α *A_data;

Figure 3.4: C representations for scalar and non-scalar SAC arrays.

3.5.2 Compilation Rules

With an appropriate array representation at hand, the code generation can be

specified by means of a compilation scheme

C J SAC program K 7−→ C program ,

which transforms SAC code into semantically equivalent C code. In order to

liberate the compilation scheme from a concrete implementation, pseudo state-

ments — so-called intermediate code macros (ICMs for short) — are used

within the C code. On the one hand this allows to change the code gener-

ation without modifying the compiler itself, on the other hand it makes the

compilation scheme more concise.

The following ICMs are repeatedly used by the compilation rules:

• ALLOC(A :τ) allocates memory needed for the C representation of the

array A, i. e. it allocates memory for the reference counter (A_rc) and

the data vector (A_data) if τ is a non-scalar type, and does nothing

otherwise. Subsequently, this macro initializes the reference counter (if

present) with 1.

• FREE(A :τ) releases the array A (reference counter and data vector)

from memory.

• ADJUST_RC(A :τ , cnt) increments the reference counter (if present)

of the array A by the integer cnt :

*A_rc += cnt; .

34 Chapter 3. Compilation of SAC Programs into Non-Generic Code

Note that cnt could be a negative number which leads to a decrement of

(−cnt) of course. If the adjusted reference counter drops to 0, the array

is no longer needed and therefore removed from memory:

if (*A_rc < 1) {

FREE(A :τ);

} .

• SV(A :τ) returns the shape vector of the array A.

• DV(A :τ) returns the data vector of the array A.

• SET_DV_SUB(A :τ , iv, dv) fills the part of DV(A) which is addressed

by the index vector iv with the elements of the vector dv , where dv must

be made to fit exactly into the addressed part of the data vector.

• SET_DV(A :τ , dv) fills the data vector of the array A with the el-

ements of the vector dv , i. e. it is an abbreviation for the statement

SET_DV_SUB(A :τ , [], dv) .

• SET_DV_PRF(B :σ, prf ,A1 :τ 1, . . . ,Am :τm) fills the data vector of

the array B with the result of the primitive array operation prf applied

to the arguments A1, . . . , Am.

Furthermore, the operation ++ is used to concatenate two vectors.

The compilation rules for the basic language constructs are defined as fol-

lows. (Note, that for reasons of clarity, function definitions and applications are

restricted to a single argument and a single return value here. Nevertheless,

the SAC compiler can handle arbitrary numbers of arguments and return values

of course.) The first rule applies to a sequence of function definitions:

C

u
wwwwwwwwwwv

σ fun(τ A)

{

Vardecs

Body

return(B :σ);

}

Rest

}
����������~

7−→







FUN_DEC(fun,

DEC_OUT(B :σ),

DEC_IN(A :τ))

{

C J Vardecs K
DECL_SHAPE_ARG(A :τ)

ADJUST_RC(A :τ , Refs(A)−1)

C
q

Body
y

FUN_RET(B :σ)

}

C J Rest K

.

3.5. Code Generation 35

The macro FUN_DEC defines the header of a C function fun with the return type

void and formal arguments which are generated by the ICMs

DEC_OUT(B :σ) , DEC_IN(A :τ) ,

i. e. the return values of a SAC function are implemented as reference parame-

ters because C functions allow a single return value only. Suppose τ and σ are

both non-scalar types with base types α and β respectively. Then, the macro

DEC_IN stands for the two arguments

int *A_rc , α *A_data ,

whereas DEC_OUT stands for the two reference parameters

int **ret_B_rc , β **ret_B_data .

Consistent with these macros, the return statement of a SAC function is com-

piled into an ICM named FUN_RET which assigns these reference parameters:

*ret_B_rc = B_rc;

*ret_B_data = B_data; .

Note that it is unnecessary to pass the shape information of the argument

(A_dim, etc.) to the function. Instead, these values are declared as local con-

stants by means of the macro DECL_SHAPE_ARG. Consider, for example, that τ
represents the type float[4, 3]. In this case, DECL_SHAPE_ARG would expand

to the following C declarations:

const int A_dim = 2;

const int A_size = 12;

const int A_sv0 = 4;

const int A_sv1 = 3; .

The macro ADJUST_RC is used to update the reference counter of the argument

A. As already mentioned in Section 3.4, the reference counter must be incre-

mented by the number of references in the function body and subsequently

decremented by 1, i. e. an increment of (Refs(A) − 1) is needed, where Refs
denotes the abstract function which has been inferred during the reference

counting inference phase of the compiler.

The next rule covers variable declarations:

C

s
τ A;

Rest

{
7−→

{
DECL(A :τ)

C J Rest K .

The macro DECL expands to a C declaration as shown in Figure 3.4 on page 33.

Since the shape vectors of arrays are defined in the declaration part as con-

stants, other compilation rules which generate new arrays have to deal with

data vectors only.

36 Chapter 3. Compilation of SAC Programs into Non-Generic Code

Assignments with a variable on the right hand side

C

s
B :σ = A :τ ;

Rest

{
7−→







ASSIGN(B :σ, A :τ)

ADJUST_RC(B :σ, Refs(B)−1)

C J Rest K

compile into the macro ASSIGN which simply does the following assignments:

B_rc = A_rc;

B_data = A_data; .

As a consequence, B and A represent the same array and the reference counter

must be incremented by (Refs(B) − 1).

Assignments with a vector construct on the right hand side require the cre-

ation of a new array which is done by means of four ICM statements:

C

s
B :σ = [A1 :τ , . . . , Am :τ];

Rest

{

7−→







ALLOC(B :σ)

SET_DV(B :σ, DV(A1 :τ)++ . . . ++ DV(Am :τ))

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(Ai :τ , −1) , i ∈ {1, . . . , m}
C J Rest K

.

ALLOC allocates memory for the reference counter as well as for the data vector

of the new array and initializes the reference counter with 1. The macro SET_DV

is used to write the entries of the data vector. Finally, the reference counters

of the vector elements involved have to be adjusted. The counter of the new

array is incremented by (Refs(B) − 1), and the counters of the arguments are

decremented by 1.

Assignments with a constant scalar on the right hand side are compiled

similar to the preceding rule:

C

s
B :σ = val;

Rest

{
7−→







ALLOC(B :σ)

SET_DV(B :σ, [val])

ADJUST_RC(B :σ, Refs(B)−1)

C J Rest K

.

Since B is a scalar array here, the two macros ALLOC and ADJUST_RC expand

to empty statements, and SET_DV simply generates the assignment

B = val; .

Assignments with a function application are compiled into the macro

FUN_AP, which is the counterpart of FUN_DEC:

3.5. Code Generation 37

C

s
B :σ = fun(A :τ);

Rest

{
7−→







FUN_AP(fun,

AP_OUT(B :σ),

AP_IN(A :τ))

ADJUST_RC(B :σ, Refs(B)−1)

C J Rest K

.

The macro FUN_AP stands for an application of the function fun to arguments

which are generated by the ICMs

AP_OUT(B :σ) , AP_IN(A :τ) .

Assuming that τ and σ are both non-scalar types, the macro AP_IN expands

to the two arguments

A_rc , A_data ,

and AP_OUT expands to the two reference arguments

&B_rc , &B_data .

Moreover, the reference counter of the result B has to be incremented by

(Refs(B) − 1). The reference counters of the arguments, however, are left

untouched — they are handled by the function itself.

The primitive operation reshape generates an array with the same data

vector as the given argument. Since the shape vector of the result has already

been defined in the declaration part (DECL), the reshape operation can in fact

be compiled like an assignment with a variable on the right hand side:

C

s
B :σ = reshape(sv :τ ′, A :τ);

Rest

{
7−→







C J B :σ = A :τ ; K
ADJUST_RC(sv :τ ′, −1)

C J Rest K
.

Besides, the reference counter of the (ignored) argument sv has to be decre-

mented.

The primitive operation modarray returns a new array which is identical to

the first argument except for a subarray. In general, it is necessary to allocate

new memory for the result (ALLOC) and to initialize all elements of the new

data vector (SET_DV_PRF). If the reference counter of the first argument equals

1, however, the modarray operation can be done in place, i. e. the first argument

can be reused for the result (ASSIGN) and only the specified subarray of the data

vector must be rewritten (SET_DV_SUB):

38 Chapter 3. Compilation of SAC Programs into Non-Generic Code

C

s
B :σ = modarray(A :τ , iv :τ ′, val :τ ′′);

Rest

{

7−→







if(A_rc > 1) {

ALLOC(B :σ)

SET_DV_PRF(B :σ, modarray, A :τ , iv :τ ′, val :τ ′′)

ADJUST_RC(A :τ , −1)

}

else {

ASSIGN(B :σ, A :τ)

SET_DV_SUB(B :σ, iv :τ ′, DV(val :τ ′′))

}

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(iv :τ ′, −1)

ADJUST_RC(val :τ ′′, −1)

C J Rest K

.

Note that the compiler does not generate the if-clause if it is redundant.

Whenever Rest contains at least one reference of A, it is impossible to do the

modarray operation in place, i. e. the condition (A_rc > 1) would always be

satisfied. In this case, it suffices to generate the first code block of the if-clause

only.

The remaining primitive array operations are compiled in a uniform way:

C

s
B :σ = prf (A1 :τ 1, . . . , Am :τm);

Rest

{

7−→







ALLOC(B :σ)

SET_DV_PRF(B :σ, prf , A1 :τ 1, . . . , Am :τm)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(Ai :τ i, −1) , i ∈ {1, . . . , m}
C J Rest K

.

They all produce a new array, therefore, an ALLOC statement is needed. Sub-

sequently, the data vector of this array is filled with the result of the array

operation (SET_DV_PRF). After that, the reference counters have to be adjusted

as usual.

The complete compilation scheme for with-loops is rather complicated and

beyond the scope of this thesis. During code optimizations (with-loop folding)

the compiler may create with-loops with multiple generator/operation pairs.

Besides, the compiler backend allows to partition or alter the iteration space

of with-loops, e. g. for loop tiling [Wolf89, LRW91] to improve cache perfor-

3.5. Code Generation 39

mance, or for load balancing on multiprocessor systems. All these aspects are

of no importance for the remainder of this thesis and will be ignored here. A

detailed coverage of these issues can be found in [Krey98, GKS00] (sequen-

tially executable code only) and [Grel01] (implicit support for multiprocessor

systems).

Ignoring a few details, the following C code is generated for a modarray-

with-loop:

C

u
wwv

B :σ = with(. . . iv :τ ′ . . .) {

expr :τ ′′ = . . . iv :τ ′ . . . ;

} modarray(A :τ , iv :τ ′, expr :τ ′′);

Rest

}
��~

7−→







ALLOC(B :σ)

WITH_LOOP(iv,

C J expr :τ ′′ = . . . iv :τ ′ . . . ; K
SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

ADJUST_RC(expr :τ ′′, −1)

,

COPY_DV_SUB(B :σ, iv, A :τ)

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(A :τ , −1)

C J Rest K

.

The macros ALLOC and ADJUST_RC are used to create a new2 array B and to

adjust the reference counters of the arrays involved. The macro WITH_LOOP

generates all the code needed to iterate over the whole index vector domain

of the array B . The first argument of this macro defines the name of the it-

eration variable iv . The second argument specifies the code to be executed

in each iteration step if the current value of iv is covered by the generator:

The operation specified for the with-loop is performed and the result (expr) is

stored in the array B by means of the macro SET_DV_SUB. The third argument

defines the code to be executed for the complementary index vectors: The cor-

responding array elements are copied from the source array A, using the macro

COPY_DV_SUB.

The compilation rule for genarray-with-loops is almost identical to the one

for modarray-with-loops:

2Similar to the rule for the primitive operation modarray, the compiler may add branch

conditions to reuse already allocated arrays rather than allocating new memory. For reasons of

clarity, this has been left out here.

40 Chapter 3. Compilation of SAC Programs into Non-Generic Code

C

u
wwv

B :σ = with(. . . iv :τ ′ . . .) {

expr :τ ′′ = . . . iv :τ ′ . . . ;

} genarray(sv :τ , expr :τ ′′);

Rest

}
��~

7−→







ALLOC(B :σ)

WITH_LOOP(iv,

C J expr :τ ′′ = . . . iv :τ ′ . . . ; K
SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

ADJUST_RC(expr :τ ′′, −1)

,

SET_DV_SUB(B :σ, iv, [0, . . . , 0])

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(sv :τ , −1)

C J Rest K

.

The main difference is found in the third argument of the WITH_LOOP macro.

Array elements not covered by the generator are initialized with the default

value 0 now.

The compilation of fold-with-loops is done as follows:

C

u
wwv

B :σ = with(. . . iv :τ ′ . . .) {

expr :τ ′′ = . . . iv :τ ′ . . . ;

} fold(foldop, neutral :τ , expr :τ ′′);

Rest

}
��~

7−→







C J B :σ = neutral :τ ; K
WITH_LOOP(iv,

C J expr :τ ′′ = . . . iv :τ ′ . . . ; K
C J B :σ = foldop(B :σ, expr :τ ′′); K

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(neutral :τ , −1)

C J Rest K

.

Before entering the iteration, the result B is initialized with the given neutral

element. Subsequently, for each element of the index vector set the value expr

is computed and folded into B . Note that it is unnecessary to specify a third

argument for the macro WITH_LOOP here because the iteration space contains

the generator elements only.

3.6. Towards an Enhanced Compilation Scheme 41

3.6 Towards an Enhanced Compilation Scheme

The compilation scheme described so far has been implemented in the recent

SAC compiler (revision v0.9.1). Several case studies have shown that array-

intensive applications written in SAC execute as fast as their FORTRAN or SISAL

equivalents [Scho98a, GS00]. Unfortunately, the compilation scheme has a

serious shortcoming: It relies on static shape inference (i. e. it is absolutely

necessary to infer the exact shapes of all arrays encountered at compile time),

but static shape inference is undesirable or even impossible in certain situations:

• Some input data may have variable shapes, e. g. if read from a file. In

this case, the program has to be compiled individually for each shape

configuration.

• Generic functions must be recompiled for each argument shape — no

separate compilation (e. g. of libraries/modules) is possible for them.

• Each application of a generic function induces function specialization.

This could be very time and space consuming in case of recursive func-

tions whose argument shapes are changing with each recursive call. For

example, applying the function Det (see Figure 2.8 on page 20) to an

argument of shape [100, 100] causes the compiler to build specialized in-

stances for shape [100, 100], [99, 99], [98, 98], etc. — these are 98 new

instances in total!

• Even worse, static shape inference is undecidable in general.

In summary, on the one hand static knowledge of exact shapes is essen-

tial for generating code with a competitive runtime performance, on the other

hand insistence on static shape inference restricts the expressive power of the

language significantly. In order to resolve this dilemma, a compilation scheme

has to be invented that supports not only exact shapes but the entire hierarchy

of array types. It should generate shape-specific code whenever possible and

create more generic code otherwise.

Such an approach basically brings about two problems. The first problem

is about function overloading. A SAC program might contain shape-specific as

well as generic instances of a single operation. The semantics of SAC prescribes

that for each function application the most specific instance suitable for the

arguments must be used. The question is, how this dispatch can be done.

Consider, for instance, applications of the function Det to arguments of type

int[3, 3], int[•,•], and int[+]. For the first application the compiler may build a

42 Chapter 3. Compilation of SAC Programs into Non-Generic Code

specialization of the second instance with argument shape [3, 3] and resolve the

overloading statically. For the second application no specialization is needed,

but it is not statically decidable which instance must be used. Each of the three

instances available — the two given by the programmer and the one built by the

compiler — may be applicable. Thus, the compiler should generate additional

code that chooses the matching instance at runtime. For the third application

the situation is basically the same, but here an additional dynamic type check

is recommended to ensure at runtime that the argument represents indeed a

two-dimensional array.

So, in general it can be a rather complicated and time consuming task to

determine which functions have to be specialized for which argument shapes,

and to build all the tailor-made code fragments that resolve the overloading.

A word about “overloading”: In principle, the compiler has to distinguish

between overloaded instances given by the programmer and specialized in-

stances built during the compilation process. The former instances must be

dispatched since they (most likely) have different meanings. The latter in-

stances should be dispatched — for efficiency reasons it is desirable to use

specialized instances whenever possible, but ignoring them would not alter the

meaning of the application. Take as an example an application of the function

Det to an argument of type int[•,•]. It is essential here to take the user-defined

instances (Det__i_2_2, Det__i_X_X) into account; it would be fatal to apply

Det__i_X_X to an argument of shape [2, 2]. But it would be possible to ignore

the specialized instance (Det__i_3_3) for the dispatch; applying Det__i_X_X

instead of Det__i_3_3 to an argument of shape [3, 3] would reduce the run-

time performance but has no impact on the result of the computation. From

a pragmatic point of view, however, the distinction between user-defined and

specialized instances is superfluous. Since runtime performance plays an im-

portant role, specialized instances are always dispatched in the same way as

user-defined instances. Therefore, in this thesis the term “function overload-

ing” is used for all functions for which multiple instances exist — irrespective

of whether these instances are user-defined or compiler-generated (via special-

ization).

The second problem comes about in the code generation phase of the com-

piler. The compiler must be able to generate code for four categories of array

types with different levels of shape information. For this purpose, suitable C

representations for these shape informations must be found. Runtime evalua-

tions reveal that it is more efficient to use four different representations (one for

each type category), instead of a single one only. As a consequence, the compila-

tion rules for the code generation must be parameterized with respect to types,

3.6. Towards an Enhanced Compilation Scheme 43

i. e. the code generated for a concrete language construct must be adapted to

the actual array types involved. Unfortunately, the number of code variants

increases exponentially with the number of arguments, e. g. if a language con-

struct requires three arguments with four different array representations each,

the compiler must be able to generate 43 = 64 different code variants for it.

Moreover, formal and actual argument type of a function application may

differ. Hence, it may be necessary to convert arguments from one representa-

tion into another. Take as an example an application of Det to an argument of

type int[•,•] which at runtime turns out to be a int[2, 2] array. In this case, the

first instance of Det has to be applied. But before doing so, the argument must

be converted from the int[•,•] into the int[2, 2] representation. In order to get

an optimal runtime performance, the different array representations should be

designed in a way that minimizes the cost of these conversion operations.

44 Chapter 3. Compilation of SAC Programs into Non-Generic Code

Chapter 4

Compilation of SAC Programs into

Generic Code

This chapter describes a new compilation scheme for SAC that supports the

entire hierarchy of array types and, thus, avoids the flaws (see Section 3.6) of a

compiler that relies on static shape inference only. The basic idea is to generate

shape-specific C code whenever exact shapes can be statically inferred and to

emit more generic code otherwise.

The basic structure of the new compilation scheme can be adopted from

Section 3.1, however, some compilation phases have to be modified, namely the

type inference system (see Section 4.1), the resolution of function overloading

(see Section 4.2), and the code generation (see Section 4.3). A brief description

of the actual implementation of the new compilation scheme along with some

directions for further improvements can be found in Section 4.4.

Note, that the following section about type inference and function special-

ization is just an excerpt from [Scho01] and is given here as background in-

formation only. Topic of this thesis is code generation; it is demonstrated how

the partial shape information provided by the type system can be exploited to

generate efficiently executable code even in case of failing static shape infer-

ence. Hence, the innovative parts of the compilation scheme are described in

Section 4.2 and Section 4.3.

4.1 Type Inference and Function Specialization

The basic inference algorithm is more or less the same as described in Sec-

tion 3.2. The most important difference relates to the handling of function

45

46 Chapter 4. Compilation of SAC Programs into Generic Code

applications. Whenever a function application is encountered, it has to be

determined which function instances are relevant for it. If the shapes of the

arguments have been successfully inferred, there exists at most one relevant

instance, as shown in Section 3.2. In general, however, this is not the case.

Consider as an example that the function Det (see Figure 2.8 on page 20) is

applied to an argument of type int[•,•]. For this application both instances of

Det would be relevant. If the argument turns out to be a int[2, 2] array at run-

time, the first instance must be used, otherwise the second instance should be

applied. In order to approximate the type of the application, the return types

of all relevant instances must be taken into account. Since this approximation

should be as shape-specific as possible, the most specific common supertype

(mscs for short) of the return types in question is used. Besides, specialization

is enforced for each of the relevant instances.1

More formally, the type inference of applications is performed as follows.

Consider an application of a function f to arguments x1, . . . , xm which have

already been passed through the type inference system and have produced types

τ 1, . . . , τm:

f (x1 :τ 1, . . ., xm :τm) .

Let again

σk
1, . . .,σk

n f (k)(τ k
1 a1, . . .,τ k

m am) { Body } , k ∈ {1, . . . , N}

denote all the instances of f that occur in the given SAC program. The k -th

instance of f is said to be relevant for the above application if and only if:

∀i∈{1,...,m} :
(
τ i�τ k

i ∨ τ i�τ k
i

)
, and

¬
(

∃ l∈{1,...,N}\{k} : ∀i∈{1,...,m} :
(
τ i�τ l

i�τ k
i ∨ τ i�τ l

i=τ k
i

))

.

This definition of the term relevant is a generalized version of the definition

given on page 28 — the difference being an additional disjunction term in each

of the two formulas. Since the type inference system infers not only shape-

specific but arbitrary types now, the actual argument type τ i may be a proper

supertype of the formal argument type τ k
i , e. g. applying Det to an argument

1In order to prevent code explosion, the compiler may decide to refrain from specialization

in certain situations, e. g. if the number of instances exceeds a predefined bound, or if multiple

relevant instances have been found and, hence, the specializations built may never be actually

used at runtime.

4.2. Resolution of Function Overloading 47

of type int[•,•] means that the instance with formal type int[2, 2] is relevant

as well.

Let {
f (k) | k ∈ {1, . . . , R}

}
, R ≤ N

denote the set of all relevant function instances. As already mentioned, the

type of the j -th return value of the given application is

mscs
({

σk
j | k ∈ {1, . . . , R}

})
.

Obviously, such a supertype does not always exist, e. g. int[+] and float[•]
have no common supertype. In order to ensure that the type of the application

exists, the type inference system has to check whether the return values of all

relevant instances have pairwise a common supertype:

∀k,l∈{1,...,R} : ∀j∈{1,...,n} : ∃σ :
(
σ�σk

j ∧ σ�σl
j

)
.

Note here, that a common supertype of two arbitrary types exists if and only

if the two types have an identical base type α — in worst cases the common

supertype would be α[*]. Thus, the preceding constraint can be simplified to:

∀k,l∈{1,...,R} : ∀j∈{1,...,n} : basetype(σk
j) = basetype(σl

j) .

4.2 Resolution of Function Overloading

The type inference system of the compiler infers for each function application

the set of relevant function instances. If this set contains more than a single el-

ement, the compiler must generate additional code for the function application

which dynamically chooses the matching instance at runtime. Moreover, it may

not be statically inferable whether or not a function application is type-correct.

Type-correctness is guaranteed if and only if all actual argument types are sub-

types of the formal argument types. Otherwise the compiler has to generate

additional code for dynamic type checks as well.

Fortunately, it turns out that it is not necessary to explicitly generate indi-

vidual code that performs the resolution of overloading and the dynamic type

checks for each function application. Instead, it suffices to generate it for the

most general case only. This code is written in SAC itself and inserted into the

SAC program via a high-level code transformation. Subsequently, individual

and optimized code for each function application is obtained by means of the

usual high-level code optimizations already integrated into the compiler, like

function inlining, constant propagation, and constant folding.

48 Chapter 4. Compilation of SAC Programs into Generic Code

4.2.1 Wrapper Functions: An Example

As an example consider a function main that contains applications of the func-

tion Det to arguments of type int[3, 3], int[•,•], and int[+]. Figure 4.1 depicts

the SAC code with resolved function overloading and explicit type checks. There

exist three instances of the function Det: Two of them have been given by the

programmer (see lines 1, 2), the third one with argument shape [3, 3] (line 3)

is built by the type inference system via specialization of the [•,•] version. All

three instances of Det have unique names now.

The resolution code is implemented as a wrapper function Det__i with the

most general argument type int[*] (lines 5 – 24). All applications of the func-

tion Det in the SAC source code are replaced by applications of this wrapper

(lines 2, 3, 33 – 35). The wrapper selects the appropriate instance with respect

to the actual shape of the argument (lines 10, 13, 16), or causes a runtime error

if no appropriate instance has been found (line 20). In order to minimize on

average the number of comparisons needed to choose the correct function in-

stance, the choice is narrowed down by first checking the argument’s dimension

(line 8).

The interesting part of this code transformation is the generation of the

wrapper functions which will be addressed in the next subsection.

The impact of the usual high-level code optimizations on the code fragment

given above is demonstrated in Figure 4.2 — with all modifications compared

to Figure 4.1 printed in a different color. It turns out that the three wrapper

applications in the function main have been transformed in the expected way:

The first application has been replaced by a direct call of the appropriate in-

stance Det__i_3_3 (line 16). The second application has been inlined and the

redundant outermost if-clause of the wrapper code has been removed. Only

the optimized code of the two inner if-clauses remain which tests whether the

shape of the argument B is [2, 2] or [3, 3] (lines 18 – 30). The third application

has been left as is since the unspecific shape of the argument C inhibits further

optimizations (line 32).

4.2.2 Generation of Wrapper Functions

Consider a function f and let

σk
1, . . .,σk

n f (k)(τ k
1 a1, . . .,τ k

m am) { Body } , k ∈ {1, . . . , N}

4.2. Resolution of Function Overloading 49

1 int Det__i_2_2(int[2,2] A) { . . . }

2 int Det__i_X_X(int[.,.] A) { . . . Det__i(B) . . . }

3 int Det__i_3_3(int[3,3] A) { . . . Det__i(B) . . . }

4

5 /* wrapper function */

6 int Det__i(int[*] A)

7 {

8 if (dim(A) == 2) {

9 if (shape(A) == [2,2]) {

10 ret = Det__i_2_2(A);

11 }

12 else if (shape(A) == [3,3]) {

13 ret = Det__i_3_3(A);

14 }

15 else {

16 ret = Det__i_X_X(A);

17 }

18 }

19 else {

20 ret = ERROR("type error");

21 }

22

23 return(ret);

24 }

25

26 int main()

27 {

28 int[3,3] A;

29 int[.,.] B;

30 int[+] C;

31 . . .

32

33 a = Det__i(A);

34 b = Det__i(B);

35 c = Det__i(C);

36 . . .

37 }

Figure 4.1: SAC program after resolution of function overloading.

50 Chapter 4. Compilation of SAC Programs into Generic Code

1 int Det__i_2_2(int[2,2] A) { . . . }

2 int Det__i_X_X(int[.,.] A) { . . . }

3 int Det__i_3_3(int[3,3] A) { . . . }

4

5 /* wrapper function */

6 int Det__i(int[*] A)

7 { . . . }

8

9 int main()

10 {

11 int[3,3] A;

12 int[.,.] B;

13 int[+] C;

14 . . .

15

16 a = Det__i_3_3(A);

17

18 /* b = Det__i(B); */

19 svB = shape(B);

20 svB0 = svB{0};

21 svB1 = svB{1};

22 if ((svB0 == 2) && (svB1 == 2)) {

23 b = Det__i_2_2(B);

24 }

25 else if ((svB0 == 3) && (svB1 == 3)) {

26 b = Det__i_3_3(B);

27 }

28 else {

29 b = Det__i_X_X(B);

30 }

31

32 c = Det__i(C);

33

34 . . .

35 }

Figure 4.2: SAC program after high-level code optimizations.

4.2. Resolution of Function Overloading 51

denote all the instances of f that occur in the given SAC program. Generating

the wrapper functions for f is a process that consists of three steps.

First, function overloading with respect to base types is resolved. In general,

the instances of f may have different base type signatures, e. g. the operation

+ is defined on arguments of base type int, float, and double. Since the

compiler has inferred the base type signatures of all function applications, this

overloading can be resolved statically. Therefore, it suffices to create a separate

wrapper function for each base type signature. As a consequence, it can be

assumed here, without loss of generality, that all instances of f have identical

base type signatures, i. e.

∀k,l∈{1,...,N} : ∀i∈{1,...,m} : basetype(τ k
i) = basetype(τ l

i) .

In the second step, a decision tree is constructed which maps a given actual

argument shape signature to the relevant instance of f , if it exists. Based on

this decision tree a rather simple transformation scheme can be defined which

generates the code for the wrapper function.

Before going into formal details, the function Det will be used to illustrate

the basic structure of such a decision tree. The three instances of the function

Det have formal argument types int[2, 2], int[3, 3], and int[•,•]. The decision

tree reflects the subtype relation on these types together with the most general

type int[*], i. e. it is a directed tree consisting of four vertices. Moreover, each

vertex τ of the tree is labeled with a list containing those instances of Det which

can be applied to all arguments of type τ without causing a type error. Since

the decision tree is meant to find the most specific instance applicable, this list

is sorted with respect to subtyping. The rudimentary decision tree described so

far is depicted in Figure 4.3, where τ : funs represents a vertex τ along with

the label funs . The four labeled vertices of the tree relate to the following facts:

• int[2, 2]: Both the instances Det__i_2_2 and Det__i_X_X could be ap-

plied to arguments of shape [2, 2]. But the instance Det__i_2_2 is the

more specific one.

• int[3, 3]: Both the instances Det__i_3_3 and Det__i_X_X could be ap-

plied to arguments of shape [3, 3]. But the instance Det__i_3_3 is the

more specific one.

• int[•,•]: Two-dimensional arguments whose shape is neither [2, 2] nor

[3, 3] could be applied to the instance Det__i_X_X only.

52 Chapter 4. Compilation of SAC Programs into Generic Code

int[*] : —

int[•,•] : Det__i_X_X

int[2, 2] :
Det__i_2_2

Det__i_X_X
int[3, 3] :

Det__i_3_3

Det__i_X_X

Figure 4.3: Rudimentary decision tree for the function Det.

• int[*]: Arguments whose dimension is different from 2 could not be

applied to any instance of Det.

The function Det is a very simple example since it has a single argument only.

Nevertheless, the same method can be applied to the general case — a function

with m arguments — as well. Looking at each argument separately, it can be

used to generate m partial decision trees. Subsequently, these trees must be

combined properly to get the complete decision tree for all arguments.

More formally, the partial decision trees for the function f are defined as

follows. For each base type α let

T[α] =
(
V[α] , E[α]

)

denote the (infinite) directed tree of the subtype relation for α as depicted in

Figure 2.6 on page 18, where the sets V[α] and E[α] ⊂ V[α]×V[α] represent the

vertices and edges of the tree respectively:

V[α] = {τ | basetype(τ) = α} ,

E[α] =
{
(τ ,σ) ∈ V[α]×V[α] | (τ�σ) ∧ ¬ (∃ρ∈V[α] : τ�ρ�σ)

}
.

This tree is called Hasse diagram [BSMM99] of the relation and forms the

structural basis for partial decision trees. Roughly speaking, a partial decision

tree is a finite part of a Hasse diagram with added vertex labels.

For each argument position i of the function f let αi denote the base type

of the formal argument types τ k
i , and define a tree T

f
i which is constructed

4.2. Resolution of Function Overloading 53

analogous to T[αi] but contains only the vertices τ k
i along with the root αi[*]:

T
f
i =

(

V
f
i , E

f
i

)

, i ∈ {1, . . . ,m} ,

where

V
f
i =

{
τ k

i | k ∈ {1, . . . , N}
}
∪
{
αi[*]

}
,

E
f
i =

{
(τ ,σ) ∈ V

f
i ×V

f
i | (τ�σ) ∧ ¬ (∃ρ∈V

f
i : τ�ρ�σ)

}
.

Note here, that the vertex αi[*] ∈ V
f
i is crucial to guarantee the tree property

of T
f
i . Since the number of function instances is finite by definition, this tree is

— in contrast to T[αi] — finite as well. T
f
i represents the structure of the partial

decision tree for argument position i . Now, the required vertex labels have to

be added.

For that purpose, define a mapping funs
f
i on the set of vertices V

f
i :

funs
f
i : τ 7→

{〈
k , ∆(τ k

i ,τ)
〉
| k ∈ {1, . . . , N} ∧

(
τ k

i �τ
)}

,

where ∆(τ ,σ) denotes the number of pairwise distinct vertices which lie on

the path from τ to σ (σ excluded), e. g.

∆(float[+] , float[+]) = 0 ,

∆(float[*] , float[•]) = 2 .

A vertex τ labeled with a set containing the pair 〈k , d〉 ∈ funs
f
i (τ) indicates

that — with respect to the i -th argument position — the k -th instance of f can

be applied to all arguments of type τ without causing a type error, and that the

number of proper subtypes which exist between the formal argument type τ k
i

and the actual argument type τ equals d . This number d — called the distance

of an argument — will be used to identify the most specific instance suitable

for a given argument shape signature.

For each vertex τ of the tree T
f
i , the set funs

f
i (τ) could be considered a

label for τ , hence,

T
f
i =

(

V
f
i , E

f
i , funs

f
i

)

denotes a (vertex-) labeled version of the tree T
f
i . The labeled tree T

f
i is the

partial decision tree for argument position i of the function f .

54 Chapter 4. Compilation of SAC Programs into Generic Code

int[*] : ∅

int[•,•] : {〈2, 0〉}

int[2, 2] : {〈1, 0〉 , 〈2, 1〉} int[3, 3] : {〈3, 0〉 , 〈2, 1〉}

Figure 4.4: Labeled tree T Det

1 .

Again, consider as an example the function Det. Let the indices 1, 2, and

3 represent the instances Det__i_2_2, Det__i_X_X, and Det__i_3_3 respec-

tively. Det has a single argument only, i. e. m = 1. Moreover, the set V Det

1

contains the following types:

V Det

1 = { int[*] , int[•,•] , int[2, 2] , int[3, 3] } .

Figure 4.4 depicts the tree T Det

1 , where τ : {. . .} represents a vertex τ along

with the label funs Det

1 (τ) = {. . .}. Note that this tree is basically the same as

the one given in Figure 4.3.

Since the function Det has a single argument only, T Det

1 is in fact already

the decision tree needed to generate the wrapper code. In general, however,

the separate trees T
f
1 , . . . , T f

m for individual arguments must be combined

properly. Take as an example the following two instances of a function Foo:

int Foo(1)(int[.] A, int[.] B) { . . . }

int Foo(2)(int[2] A, int[3] B) { . . . } .

The corresponding trees T Foo

1 and T Foo

2 are shown in Figure 4.5. Assume that

the wrapper tests the arguments in ascending order (i. e. i = 1, 2). Then, the

tree T Foo

1 (left hand side of the figure) is a decision tree for the first argument.

Guided by the type of the first argument, T Foo

2 (right hand side of the figure) can

be used to build a decision tree for the second argument. If the first argument

has the type int[2], for example, the vertex label indicates that both instances

of Foo are applicable. Therefore, T Foo

2 can be used as decision tree for the

second argument. However, if the type of the first argument is int[3], the label

of the corresponding vertex int[•] tells that only the first instance of Foo is

4.2. Resolution of Function Overloading 55

int[*] : ∅

int[•] : {〈1, 0〉}

int[2] : {〈1, 1〉 , 〈2, 0〉}

int[*] : ∅

int[•] : {〈1, 0〉}

int[3] : {〈1, 1〉 , 〈2, 0〉}

Figure 4.5: Labeled trees T Foo

1 and T Foo

2 .

applicable. In this case, the instance Foo(2) must not be taken into account

for the second argument anymore and should be removed from T Foo

2 to get a

proper decision tree. These individual decision subtrees could be considered as

additional vertex labels called nextarg .

The complete decision tree for the function Foo is depicted in Figure 4.6.

Each vertex of the tree has a second label nextarg (right hand sides of the

arrows 7→) which specifies the decision tree for the next argument. Most of

these trees are empty (. /.) owing to the fact that no relevant instances are left

or the last argument has been reached. The tree in the lower right corner is

basically a copy of T Foo

2 , but with an important modification: The labels funs

contain the sum of distances over both arguments now, rather than the distance

of the second argument only. These distance sums will be used to choose the

correct function instance for the wrapper code — the element of funs with the

most specific argument shapes will get the lowest distance sum. The tree in

the upper right corner is a copy of T Foo

2 which has been adapted for the vertex

int[•], i. e. the vertex int[3] has been removed from the tree since it is relevant

for Foo(2) only, all pairs with 2 as first component have been removed from

the codomain of the mapping funs , and the labels funs contain accumulated

distances now.

In general, the decision tree for the function f has the form

T f =
(

V
f
1 , E

f
1 , funs

f
1 , nextarg

f
1

)

,

i. e. it is the tree T
f
1 together with new labels nextarg

f
1 which can be computed

by means of an abstract algorithm ANextArg :

nextarg
f
1(τ) = ANextArg

r
1 , funs

f
1(τ)

z
, τ ∈ V

f
1 .

56 Chapter 4. Compilation of SAC Programs into Generic Code

int[*] : ∅ . /.

int[•] : {〈1, 0〉}

int[*] : ∅ . /.

int[•] : {〈1, 0+0〉} . /.

int[2] : {〈1, 1〉 , 〈2, 0〉} int[*] : ∅ . /.

int[•] : {〈1, 1+0〉} . /.

int[3] : {〈1, 1+1〉 , 〈2, 0+0〉} . /.

Figure 4.6: Decision tree for the function Foo.

4.2. Resolution of Function Overloading 57

This algorithm takes two arguments — an argument position i as well as a

vertex label Funs — and is recursively defined as

ANextArg J i , Funs K =
(

V ′ , E ′ , funs ′ , nextarg ′
)

,

where

V ′ =
{
τ k

i+1 | k ∈ Funs
}
∪
{
αi+1[*]

}
,

E ′ =
{
(τ ,σ) ∈ V ′×V ′ | (τ�σ) ∧ ¬ (∃ρ∈V ′ : τ�ρ�σ)

}
,

funs ′ : τ 7→
{
〈k , d+d′〉 |

(
〈k, d〉 ∈ Funs

)
∧
(
〈k, d′〉 ∈ funs

f
i+1(τ)

)}
,

nextarg ′ : τ 7→ ANextArg J i+1 , funs ′(τ) K ,

i. e. (V ′, E ′, funs ′) is a labeled tree which is constructed similar to T
f
i+1 but has

been adapted for the label Funs . Having the definition of T
f
i+1 in mind, the

mapping funs ′ given above can be specified directly by

funs ′ : τ 7→
{〈

k , d + ∆(τ k
i+1,τ)

〉
|
(
〈k, d〉 ∈ Funs

)
∧
(
τ k

i+1�τ
)}

.

The recursion ends if the label Funs represents an empty set or if the condition

(i = m) is hold. In the former case it would be useless to compute the labels

nextarg ′ since no applicable instance of f is left, and in the latter case the last

argument position is reached. In both situations, the algorithm ANextArg simply

produces an empty tree:

ANextArg J i , ∅ K =
(
∅ , ∅ , ⊥ , ⊥

)
,

and

ANextArg J m , Funs K =
(
∅ , ∅ , ⊥ , ⊥

)
.

With a decision tree T f at hand, a transformation scheme

CWrap

q
1 , T f

y
7−→ SAC code

is used to create the body of the wrapper function. The first parameter

of this transformation scheme keeps track of the current argument position

i ∈ {1, . . . ,m} and the second parameter represents the decision tree which is

traversed in postorder.

58 Chapter 4. Compilation of SAC Programs into Generic Code

The rules for this transformation scheme are defined as follows. The first

rule applies to decision trees with roots of the form α[*]:

CWrap

u
wwwv i ,

α[*] : Funs,Nextarg

T 1 T 2

· · ·

}
���~

7−→







CWrap J i , T 1 K
CWrap J i , T 2 K
· · ·
{

CNextArg J i , Funs , Nextarg K
}

,

where Funs and Nextarg denote the labels of the root and T 1, T 2, . . . represent

(possibly missing) subtrees. At first, these subtrees are traversed and thereby

transformed into a nested conditional. Subsequently, a second transformation

scheme CNextArg , which will be defined later on, is used to generate the else-

part of this conditional.

The three remaining rules have a rather similar structure — they all gen-

erate a nested conditional with unspecified else-part. The following rule is

suitable for decision subtrees with roots of the form α[+]:

CWrap

u
wwwv i ,

α[+] : Funs,Nextarg

T 1 T 2

· · ·

}
���~

7−→







if(dim(a i) > 0) {

CWrap J i , T 1 K
CWrap J i , T 2 K
· · ·
{

CNextArg J i , Funs , Nextarg K
}

}

else

,

The next rule applies to decision subtrees with roots of the form α[•, •, . . .]:

4.2. Resolution of Function Overloading 59

CWrap

u
wwwwv

i ,

α[
d

︷ ︸︸ ︷
•, . . . , •] : Funs,Nextarg

T 1 T 2

· · ·

}
����~

7−→







if(dim(a i) == d) {

CWrap J i , T 1 K
CWrap J i , T 2 K
· · ·
{

CNextArg J i , Funs , Nextarg K
}

}

else

,

The last transformation rule is used for all decision subtrees with roots of the

form α[sv 0, sv 1, . . .], where the sv i denote components of a constant shape

vector:

CWrap

q
i , α[sv0, sv1, . . .] : Funs,Nextarg

y

7−→







if(shape(a i) == [sv0, sv1, . . .]) {

CNextArg J i , Funs , Nextarg K
}

else

.

The second transformation scheme CNextArg is defined as follows:

CNextArg

q
i , Funs , Nextarg

y

7−→







b1, . . . ,bn = ERROR("type error"); ;
if (Nextarg = . /.)

∧ (Funs = ∅)

b1, . . ., bn = f (k)(a1, . . ., am);

where (〈k, d〉 ∈ Funs) ∧
(∀〈k′,d′〉∈Funs : d ≤ d′)

;
if (Nextarg = . /.)

∧ (Funs 6= ∅)

CWrap J i+1 , Nextarg K ; if (Nextarg 6= . /.)

.

If the label Nextarg denotes an empty tree, the set Funs is searched for the

index k with the smallest distance sum, in order to generate an application of

the instance f (k). If no applicable instance of f exists, i. e. Funs = ∅, a code

60 Chapter 4. Compilation of SAC Programs into Generic Code

segment is generated which causes a runtime error. If Nextarg denotes a non-

empty tree, the transformation scheme CWrap is used recursively to generate the

wrapper code for the next argument.

Applying the transformation scheme CWrap to the decision tree for the

function Det (see Figure 4.4) yields a function body as given in Figure 4.1

(lines 8 – 21). The wrapper code obtained for the function Foo is shown in

Figure 4.7.

4.3 Code Generation

Code generation for generic SAC programs is a rather complex task. Sec-

tion 4.3.1 gives a new array representation that is suitable for the entire hi-

erarchy of array types. However, for performance reasons, this representation

consists not only of two different forms (one for scalars and one for non-scalars)

but of four (one for each type category). This has only little impact on the ICM

code used for the compilation rules (see Section 4.3.2), but implementing the

ICMs itself is much more complicated than in the non-generic case. In order to

support the various categories of array types, ICM definitions now have a tree

structure, which is exemplified in Section 4.3.3.

4.3.1 Array Representation

Arrays are uniquely defined by means of a shape and a data vector. In general,

size and contents of both vectors are unknown at compile time. Again, an

additional reference counter (short: rc) for the implicit memory management

is needed.

In order to get a compact representation, the reference counter and the

shape vector are combined to a so-called descriptor containing reference

counter, dimension, and all shape components. Keeping descriptor and data

vector separately allows arrays to be handled uniquely irrespective of the length

of their shape and data vectors, and facilitates interfacing to external languages

such as C.

Unfortunately, this simple and uniform array representation does not suffice

to obtain best possible runtime performance. Storing the shape in the descrip-

tor (only) is in many situations inefficient, because the shape information is

frequently used. For instance, consider a variable A representing an array of

shape [•,•]. In this case it is guaranteed that all descriptors of the arrays, which

4.3. Code Generation 61

1 if (dim(a1) == 1) {

2 if (shape(a1) == [2]) {

3 /* nextarg */

4 if (dim(a2) == 1) {

5 if (shape(a2) == [3]) {

6 ret = Foo__i_2_3(a1, a2);

7 }

8 else {

9 ret = Foo__i_X_X(a1, a2);

10 }

11 }

12 else {

13 ret = ERROR("type error");

14 }

15 }

16 else {

17 /* nextarg */

18 if (dim(a2) == 1) {

19 ret = Foo__i_X_X(a1, a2);

20 }

21 else {

22 ret = ERROR("type error");

23 }

24 }

25 }

26 else {

27 /* nextarg */

28 ret = ERROR("type error");

29 }

Figure 4.7: Wrapper code for the function Foo.

62 Chapter 4. Compilation of SAC Programs into Generic Code

are represented by A during program execution, contain a dimension of 2. So,

in order to avoid costly accesses to the main memory, all references to the di-

mension of A should be replaced by the constant value 2. As a consequence,

it is superfluous to store the dimension of A in the descriptor at all. Moreover,

even the shape components of A are constant until a new array is assigned to A.

Therefore, it is recommended to buffer the shape components on the runtime

stack or even in registers.

But, it is unlikely that the C compiler will be able to apply such optimiza-

tions. In an imperative language like C any function call or any reference to

a vector may cause a side-effect, hence it is almost impossible to detect that a

value behind a pointer is constant or in fact superfluous. Therefore, rather than

relying on the C compiler, these optimizations have to be done on the SAC level.

For this purpose additional local variables are used, which always mirror the

shape information of the descriptor. Whenever the shape has to be inspected,

these local variables rather than the descriptor are accessed.

Figure 4.8 depicts the optimized C representations for the different cate-

gories of SAC arrays. For a variable A representing a non-scalar array, a descrip-

tor A_desc and a data vector A_data are needed. The comment (/* . . . */)

behind the descriptor lists all its elements. Crossed out elements (e. g. dim)

denote statically known parts of the shape that are not expected in the de-

scriptor (i. e. the corresponding descriptor entries possibly contain undefined

values) and that are declared as scalar constants instead. Furthermore, all vari-

able parts of the shape are mirrored in scalar variables. Note that mirroring

the shape components is impossible for arrays of shape [+] or [*], because the

number of needed scalars is unknown during compilation.

So, the hierarchy of array types in SAC is represented by a hierarchy of C

representations. As a result, the compilation rules for array operations must be

parameterized with respect to array categories, and in certain situations arrays

must be converted from one representation into another.

4.3.2 Compilation Rules

With respect to ICM code most compilation rules can be more or less left as in

the preceding chapter. However, some modifications are necessary. Since array

shapes are not always statically known, the macro ALLOC needs a second argu-

ment sv that specifies how to compute the actual shape vector. Therefore, all

rules which create an array must be revisited. Moreover, the compiler should

optionally add runtime checks whenever type constraints could not be verified

4.3. Code Generation 63

Decl. in SAC Declaration in C

α[] A; α A;

const int A_dim = 2;

const int A_size = 12;

const int A_sv0 = 4;
α[4, 3] A;

const int A_sv1 = 3;

int *A_desc; /* rc, dim, size, sv0, sv1 */

α *A_data;

const int A_dim = 2;

int A_size;

int A_sv0;
α[•,•] A;

int A_sv1;

int *A_desc; /* rc, dim, size, sv0, sv1 */

α *A_data;

int A_dim;
α[+] A;

int A_size;
and

int *A_desc; /* rc, dim, size, sv0, . . . */
α[*] A;

α *A_data;

Figure 4.8: C representations for the different categories of SAC arrays.

64 Chapter 4. Compilation of SAC Programs into Generic Code

at compile time. Only the rule for function applications, the rule for the prim-

itive operation reshape, and the rule for genarray-with-loops need further

changes.

The revised compilation rules for the basic language constructs are defined

as follows. (For reasons of clarity, function definitions and applications are

again restricted to a single argument and a single return value here. Neverthe-

less, the SAC compiler can handle arbitrary numbers of arguments and return

values of course.) Function definitions are translated into the same ICM code

as given in Section 3.5.2:

C

u
wwwwwwwwwwv

σ fun(τ A)

{

Vardecs

Body

return(B :σ);

}

Rest

}
����������~

7−→







FUN_DEC(fun,

DEC_OUT(B :σ),

DEC_IN(A :τ))

{

C J Vardecs K
DECL_SHAPE_ARG(A :τ)

ADJUST_RC(A :τ , Refs(A)−1)

C
q

Body
y

FUN_RET(B :σ)

}

C J Rest K

.

However, the implementation of the macros DEC_IN, DEC_OUT as well as

DECL_SHAPE_ARG must be modified to meet the new array representation (see

Figure 4.8 on the page before). Consider, for example, that τ denotes the type

float[•,•]. That being the case, the macro DEC_IN would stand for

int *A_desc , float *A_data ,

DEC_OUT would expand to the two reference parameters

int **ret_B_desc , β **ret_B_data ,

and DECL_SHAPE_ARG would generate the following C declarations:

const int A_dim = 2;

int A_size;

int A_sv0;

int A_sv1; .

Variable declarations are also compiled the usual way:

C

s
τ A;

Rest

{
7−→

{
DECL(A :τ)

C J Rest K .

4.3. Code Generation 65

Here, the macro DECL generates a C declaration as outlined in Figure 4.8 of

course.

Likewise, no modifications are needed in the ICM code for assignments with

a variable on the right hand side:

C

s
B :σ = A :τ ;

Rest

{
7−→







ASSIGN(B :σ, A :τ)

ADJUST_RC(B :σ, Refs(B)−1)

C J Rest K
.

But the macro ASSIGN has to convert the array representation if necessary. Take

as an example σ ≡ float[+] and τ ≡ float[•,•]. Then, the following C code

is created for ASSIGN:

B_dim = A_dim; /* assign mirror */

B_size = A_size; /* assign mirror */

B_desc = A_desc; /* assign descriptor */

B_desc[1] = A_dim; /* adjust descriptor */

B_data = A_data; /* assign data vector */ .

However, if the inferred types are σ ≡ float[•,•] and τ ≡ float[+], a runtime

check2 (RT_CHECK) is added to assure that A is a two-dimensional array:

RT_CHECK(A_dim = 2) /* check dimension */

B_size = A_size; /* assign mirror */

B_sv0 = A_desc[3]; /* assign mirror */

B_sv1 = A_desc[4]; /* assign mirror */

B_desc = A_desc; /* assign descriptor */

B_data = A_data; /* assign data vector */ .

Another important situation arises if B has shape [*] and A has shape [], or vice

versa. If σ ≡ float[*] and τ ≡ float[], memory for B has to be allocated:

ALLOC(B :σ, [])

B_data[0] = A; /* assign data vector */ .

If σ ≡ float[] and τ ≡ float[*], the data of A is not reused by B , thus, the

reference counter of A must be decremented:

RT_CHECK(A_dim = 2) /* check dimension */

RT_CHECK(A_size = 1) /* check size */

B = A_data[0]; /* assign data vector */

ADJUST_RC(A :τ , −1) .

Assignments with a vector construct of length m on the right hand side

require the creation of a new array (ALLOC) whose shape equals the concatena-

tion of [m] and the shape of the vector elements. In order to guarantee that all

2Runtime checks are optional. For optimal runtime performance all runtime checks can be

disabled by means of a compiler flag.

66 Chapter 4. Compilation of SAC Programs into Generic Code

vector elements have identical shapes, additional runtime checks (RT_CHECK)

are added. The rest of the ICM code is the same as given in Section 3.5.2:

C

s
B :σ = [A1 :τ 1, . . . , Am :τm];

Rest

{

7−→







RT_CHECK(SV(Ai :τ i) = SV(A1 :τ 1)) , i ∈ {2, . . . , m}
ALLOC(B :σ, [m] ++ SV(A1 :τ 1))

SET_DV(B :σ, DV(A1 :τ 1)++ . . . ++ DV(Am :τm))

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(Ai :τ i, −1) , i ∈ {1, . . . , m}
C J Rest K

.

Assignments with a constant scalar on the right hand side are compiled

similar to the preceding rule. However, computing the shape vector is trivial

here — the shape equals the empty vector:

C

s
B :σ = val;

Rest

{
7−→







ALLOC(B :σ, [])

SET_DV(B :σ, [val])

ADJUST_RC(B :σ, Refs(B)−1)

C J Rest K

.

Assignments with a function application are compiled as follows:

C

s
B :σ = fun(A :τ);

Rest

{
with function definition σ ′ fun(τ ′ A′) { . . . }

7−→







C

u
v

A′ :τ ′ = A :τ ;

B :σ = fun(A′ :τ ′);

Rest

}
~ ; if τ 6=τ ′

C

u
v

B ′ :σ′ = fun(A :τ);

B :σ = B ′ :σ′;

Rest

}
~ ; if σ 6=σ′

FUN_AP(fun,

AP_OUT(B :σ),

AP_IN(A :τ))

REFRESH_MIRROR(B :σ)

ADJUST_RC(B :σ, Refs(B)−1)

C J Rest K

; otherwise

.

If the types of formal and actual arguments / return values are identical,

the assignment is directly transformed into the two statements FUN_AP and

REFRESH_MIRROR. Otherwise additional assignments before or after the func-

tion application are inserted to convert the array representations accordingly.

4.3. Code Generation 67

Suppose τ = τ ′ and σ = σ′ to be both non-scalar types. Similar to the rule

given in Section 3.5.2, the macro FUN_AP expands to an application of the func-

tion fun to the arguments

&B_desc , &B_data ,

A_desc , A_data .

Note that the mirror variables of the array representation (B_dim, etc.) are

not passed to the function, because the function signature must be compatible

with all argument types. Instead, the subsequent statement REFRESH_MIRROR

assures that the mirror variables are initialized with the corresponding values of

the descriptor. If, for instance, σ represents the type float[•,•], the following

assignments are required:

B_size = B_desc[2];

B_sv0 = B_desc[3];

B_sv1 = B_desc[4]; .

As shown in the preceding chapter, compiling the primitive operation

reshape in a non-generic setting with statically known shape vectors is triv-

ial. Since the operation does not affect the data vector at all, it can be handled

like a copy assignment. With dynamic shape information being part of the array

representation this simplification is no longer applicable in general:

C

s
B :σ = reshape(sv :τ ′, A :τ);

Rest

{

7−→







if(A_desc[0] > 1) { /* rc */

ALLOC(B :σ, DV(sv :τ ′))

RT_CHECK(B_size = A_size)

SET_DV(B :σ, DV(A :τ))

ADJUST_RC(A :τ , −1)

}

else {

ASSIGN(B :σ, A :τ)

}

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(sv :τ ′, −1)

C J Rest K

.

Assuming that the reference counter of the source array is greater than 1, A

and B should not be considered the same array because the contents of their

descriptors may differ (or may get different during further program execution).

Take as an example the following fragment of a SAC program:

68 Chapter 4. Compilation of SAC Programs into Generic Code

int[2,3] A;

int[3,2] B;

int[.,.] C;

A = . . .;

B = reshape([3,2], A);

C = B; .

After the reshape operation, the descriptors of A and B both contain the refer-

ence counter only. But after the subsequent assignment C = B; , the descriptor

of B (alias C) is filled with shape information that would be inappropriate for A.

As a consequence, reshape has to create a new array (ALLOC) and must copy

the whole data vector (SET_DV). Copying the data vector could be avoided

here, however, by using an array representation with separate reference coun-

ters for data and shape vector, which would allow to create a new shape vector

while reusing the data vector. But reshape operations on non-reusable arrays

are very rare in practice, and using two reference counters would double the

reference counting overhead for all array operations. Therefore, it is not rec-

ommended to use such an inefficient array representation.

The ICM code for the other primitive array operations (including modarray)

is basically the same as in the old compilation scheme, the only differences

being the modified signature of the ALLOC macro and some additional runtime

checks. The modarray operation is compiled as follows:

C

s
B :σ = modarray(A :τ , iv :τ ′, val :τ ′′);

Rest

{

7−→







RT_CHECK(iv_dim = 1)

RT_CHECK(iv_size ≤ A_dim)

RT_CHECK(SV(val :τ ′′) = SV(A :τ)
∣
∣A_dim−1

iv_size
)

if(A_desc[0] > 1) { /* rc */

ALLOC(B :σ, SV(A :τ))

SET_DV_PRF(B :σ, modarray, A :τ , iv :τ ′, val :τ ′′)

ADJUST_RC(A :τ , −1)

}

else {

ASSIGN(B :σ, A :τ)

SET_DV_SUB(B :σ, iv :τ ′, DV(val :τ ′′))

}

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(iv :τ ′, −1)

ADJUST_RC(val :τ ′′, −1)

C J Rest K

,

4.3. Code Generation 69

where the runtime checks guarantee that iv is a legal index vector, and that val

has the correct size with respect to A. (The formula [v0, v1, v2, . . .]
∣
∣
k

j
denotes

the vector [vj, vj+1, . . . , vk].)

The compilation rules for the remaining primitive array operations have the

following form:

C

s
B :σ = prf (A1 :τ 1, . . . , Am :τm);

Rest

{

7−→







RT_CHECK(. . .)

ALLOC(B :σ,

CALC_SV_PRF(B :σ, prf , A1 :τ 1, . . . , Am :τm))

SET_DV_PRF(B :σ, prf , A1 :τ 1, . . . , Am :τm)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(Ai :τ i, −1) , i ∈ {1, . . . , m}
C J Rest K

,

where the statement CALC_SV_PRF represents the prf -specific computation of

the shape vector for the result.

The compilation rule for fold-with-loops can be left as given in the preced-

ing chapter:

C

u
wwv

B :σ = with(. . . iv :τ ′ . . .) {

expr :τ ′′ = . . . iv :τ ′ . . . ;

} fold(foldop, neutral :τ , expr :τ ′′);

Rest

}
��~

7−→







C J B :σ = neutral :τ ; K
WITH_LOOP(iv,

C J expr :τ ′′ = . . . iv :τ ′ . . . ; K
C J B :σ = foldop(B :σ, expr :τ ′′); K

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(neutral :τ , −1)

C J Rest K

.

However, the implementation of the macro WITH_LOOP is much more complex

here. If the generator of the with-loop specifies index vectors with unknown

shape, the dimension of the iteration space is unknown at compile time. Thus,

it is impossible to create a static loop nesting with separate loops for each axis.

By contrast, the proper index vector has to be computed for each iteration step

dynamically. Consider as an example the following with-loop:

70 Chapter 4. Compilation of SAC Programs into Generic Code

with(a <= iv < b)

fold(. . .) .

If a and b are statically identified as vectors with two elements, the iteration

over the index vectors specified by the generator could be implemented like

this:

for(iv[0] = a[0]; iv[0] < b[0]; iv[0]++) {

for(iv[1] = a[1]; iv[1] < b[1]; iv[1]++) {

. . .

}

} .

But without static knowledge of the shape, a dynamic loop with weaker runtime

performance is needed:

iv = a;

while(iv < b) {

. . .

iv = compute_next_index(iv, a, b);

} ,

where the loop condition (iv < b) and the function compute_next_index both

operate on vectors rather than on scalars.

The next rule applies to modarray-with-loops:

C

u
wwv

B :σ = with(. . . iv :τ ′ . . .) {

expr :τ ′′ = . . . iv :τ ′ . . . ;

} modarray(A :τ , iv :τ ′, expr :τ ′′);

Rest

}
��~

7−→







ALLOC(B :σ, SV(A :τ))

WITH_LOOP(iv,

C J expr :τ ′′ = . . . iv :τ ′ . . . ; K
RT_CHECK(SV(expr :τ ′′) = SV(B :σ)

∣
∣B_dim−1

iv_size
)

SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

ADJUST_RC(expr :τ ′′, −1)

,

COPY_DV_SUB(B :σ, iv, A :τ)

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(A :τ , −1)

C J Rest K

.

4.3. Code Generation 71

Apart from the modified signature of the ALLOC macro and an added RT_CHECK

statement, this is the same ICM code as given in the preceding chapter.3 The

runtime check assures that the instances of expr have identical shapes in each

iteration step and fit into the result B .

By contrast, compiling genarray-with-loops is not that easy. With the pres-

ence of dynamic shapes, the rule of the old compilation scheme is not generally

applicable anymore:

C

u
wwv

B :σ = with(. . . iv :τ ′ . . .) {

expr :τ ′′ = . . . iv :τ ′ . . . ;

} genarray(sv :τ , expr :τ ′′);

Rest

}
��~

7−→







ALLOC(B :σ, DV(sv :τ)++ SV(expr :τ ′′))

WITH_LOOP(iv,

C J expr :τ ′′ = . . . iv :τ ′ . . . ; K
SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

ADJUST_RC(expr :τ ′′, −1)

,

SET_DV_SUB(B :σ, iv, [0, . . . , 0])

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(sv :τ , −1)

C J Rest K

.

The problem is that the macro ALLOC needs instructions how to compute the

shape of the result B . The semantics of SAC prescribes that the shape equals

DV(sv :τ) ++ SV(expr :τ ′′) ,

hence, the shape of B depends on the shape of expr . But expr is computed

inside the loop only, therefore, during execution of the ALLOC instruction, expr

is still undefined. For that reason, the compilation rule given above is applicable

only if the shape of expr has been inferred statically. In all other cases it would

be necessary to postpone memory allocation for B until the first instance of

expr has been computed.

If the meaning of expr does not depend on iv , there exists a simple solution

for this problem. Since the computation of expr is loop invariant, it can be

3Similar to the rule for the primitive operation modarray, the compiler may add branch

conditions to reuse already allocated arrays rather than allocating new memory. For reasons of

clarity, this has been left out here.

72 Chapter 4. Compilation of SAC Programs into Generic Code

moved in front of the with-loop.4 This leads to the following compilation rule:

C

u
wwv

B :σ = with(. . . iv :τ ′ . . .) {

expr :τ ′′ = . . . ;

} genarray(sv :τ , expr :τ ′′);

Rest

}
��~

7−→







C J expr :τ ′′ = . . . ; K
ALLOC(B :σ, DV(sv :τ)++ SV(expr :τ ′′))

WITH_LOOP(iv,

SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

,

SET_DV_SUB(B :σ, iv, [0, . . . , 0])

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(sv :τ , −1)

ADJUST_RC(expr :τ ′′, −1)

C J Rest K

.

In general, however, the value of expr will depend on the index variable

iv . In such a situation, the ALLOC instruction must be executed after the first

instance of expr has been computed. The easiest way to tackle this problem is

to perform loop peeling, i. e. to extract the code for a single loop iteration (e. g.

for the smallest index vector specified by the generator) and to move this code

in front of the with-loop:

4In fact, this optimization is done already during loop invariant removal as part of the high-

level code optimizations (see Section 3.3).

4.3. Code Generation 73

C

u
wwv

B :σ = with(a :τ ′ <= iv :τ ′ <= b :τ ′ . . .) {

expr :τ ′′ = . . . iv :τ ′ . . . ;

} genarray(sv :τ , expr :τ ′′);

Rest

}
��~

7−→







C

s
iv :τ ′ = a :τ ′;

expr :τ ′′ = . . . iv :τ ′ . . . ;

{

ALLOC(B :σ, DV(sv :τ)++ SV(expr :τ ′′))

SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

ADJUST_RC(expr :τ ′′, −1)

WITH_LOOP’(iv,

C J expr :τ ′′ = . . . iv :τ ′ . . . ; K
RT_CHECK(SV(expr :τ ′′) = SV(B :σ)

∣
∣B_dim−1

iv_size
)

SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

ADJUST_RC(expr :τ ′′, −1)

,

SET_DV_SUB(B :σ, iv, [0, . . . , 0])

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(sv :τ , −1)

C J Rest K

.

The assignments in front of the ALLOC instruction compute the value of expr

for the smallest instance of the index vector iv which is named a here. The sub-

sequent SET_DV_SUB statement stores this value in the array B . The rest of the

ICM code is constructed in the familiar way, except that the macro WITH_LOOP

has been replaced by WITH_LOOP’ which indicates that one index vector (a)

has been removed from the iteration space.

Unfortunately, even this revised compilation rule fails if the generator of

the with-loop specifies an empty index vector set, i. e. it is (a 6≤ b). Since the

domain of the index variable iv is empty, no instance of expr exists. Hence,

it is impossible to use expr to calculate the shape of B in this situation, and

the compiler must return an error message. If the condition (a ≤ b) can not be

evaluated statically, this check must be done at runtime:

74 Chapter 4. Compilation of SAC Programs into Generic Code

C

u
wwv

B :σ = with(a :τ ′ <= iv :τ ′ <= b :τ ′ . . .) {

expr :τ ′′ = . . . iv :τ ′ . . . ;

} genarray(sv :τ , expr :τ ′′);

Rest

}
��~

7−→







if(a ≤ b) {

C

s
iv :τ ′ = a :τ ′;

expr :τ ′′ = . . . iv :τ ′ . . . ;

{

ALLOC(B :σ, DV(sv :τ)++ SV(expr :τ ′′))

SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

ADJUST_RC(expr :τ ′′, −1)

}

else {

RT_ERROR("Result of WL has unknown shape")

}

WITH_LOOP’(iv,

C J expr :τ ′′ = . . . iv :τ ′ . . . ; K
RT_CHECK(SV(expr :τ ′′) = SV(B :σ)

∣
∣B_dim−1

iv_size
)

SET_DV_SUB(B :σ, iv, DV(expr :τ ′′))

ADJUST_RC(expr :τ ′′, −1)

,

SET_DV_SUB(B :σ, iv, [0, . . . , 0])

)

ADJUST_RC(B :σ, Refs(B)−1)

ADJUST_RC(sv :τ , −1)

C J Rest K

.

4.3.3 Intermediate Code Macros

The compilation rules defined in the preceding subsection do not produce pure

C code, but C code enriched with intermediate code macros (ICMs). This is

done to liberate the compilation scheme from a concrete implementation, for

instance from the choice of the array representation.

In a non-generic setting as given in Chapter 3 these ICMs can be trans-

lated into plain C code rather straitforwardly. Since the shapes of all arrays are

statically known, only two different array representations are needed: scalars

and non-scalars. Moreover, there is no need to convert arrays from one rep-

resentation into another. Hence, for each ICM exist at most two variants of

implementation, one for scalar arguments and one for non-scalar arguments.

4.3. Code Generation 75

With the presence of dynamic shapes the situation is much more compli-

cated though. To achieve utmost runtime performance, four different array

representations are used. Furthermore, function applications may require ar-

rays to be converted from one array representation into another, and array

operations may be applied to arguments of manifold type configurations. As a

consequence, for many ICMs exist a large number of different implementation

variants for different argument types.

Take as an example the ICM

ASSIGN(B :σ, A :τ) ,

which assigns the source array A to the target array B and converts the array

representation accordingly. This macro must be implemented for 16 different

combinations of argument types. (Two arguments with four different array rep-

resentations each → 42 = 16 combinations.) Some of these C implementations

have already been given on page 65. But, in order to simplify compiler mainte-

nance by reducing the number of implementation variants, it is recommended

to use further ICM layers rather than generating C code directly.

On the lowest level of abstraction, several ICMs for accessing the shape in-

formation of an array (i. e. dimension, size, and shape components) are defined.

The shape information of an array A may be located in the descriptor (A_desc)

or in the mirror variables (A_dim, A_size, A_sv0, . . .), therefore, two sets of

access macros are needed with prefixes DESC and MIRROR. For read accesses,

it is useful to define a third set of macros with prefix READ which expands to a

mirror access whenever a suitable mirror is available and to a descriptor access

otherwise. The definitions of all these macros are given in Figure 4.9. The boxes

with thick frames contain the signatures of the ICMs, and the arrows point to

the code fragments to be generated for them. If an ICM has multiple arrows,

the code generation depends on predicates which are specified in a label next

to the arrow.

With these ICM definitions at hand, shape information of an array can be

read or modified without bothering with the concrete C representation. To take

this idea a step further, it is useful to define another layer of ICMs. In all but

one case, the macro ASSIGN has to carry out the following five tasks:

• Assure that the constant mirrors of B contain correct values with respect

to A.

• Update the mirrors of B , i. e. assign all non-constant mirrors.

76 Chapter 4. Compilation of SAC Programs into Generic Code

DESC_DIM(A :τ) A_desc[1]

DESC_SIZE(A :τ) A_desc[2]

DESC_SHP(A :τ , i) A_desc[i+3]

MIRROR_DIM(A :τ) A_dim

MIRROR_SIZE(A :τ) A_size

MIRROR_SHP(A :τ , i) A_svi

READ_DIM(A :τ)

τ∈TSCL

0

otherwise

MIRROR_DIM(A :τ)

READ_SIZE(A :τ)

τ∈TSCL

1

otherwise

MIRROR_SIZE(A :τ)

READ_SHP(A :τ , i)

τ∈TSCL

undefined

τ∈TAKS τ∈TAKD

MIRROR_SHP(A :τ , i)

τ∈TAUD

DESC_SHP(A :τ , i)

Figure 4.9: Intermediate code macros for accessing shape information.

4.3. Code Generation 77

• Assign the descriptor of B if present.

• Update the descriptor of B if present, i. e. assign all relevant descriptor

entries.

• Assign the data vector of B .

If the source array A is a scalar, however, the situation is a bit different:

• Assure that the constant mirrors of B contain correct values with respect

to A.

• Allocate memory for B , i. e. use the macro ALLOC.

• Assign the data vector of B .

Using the access macros defined in Figure 4.9, each of this tasks can be im-

plemented rather straitforwardly as a separate ICM which is demonstrated in

Figures 4.10 and 4.11.

This hierarchical definition of the ASSIGN macro has several advantages over

a monolithic definition. First of all, the number of implementation variants is

smaller — no ICM requires more than 4 variants rather than 16. Moreover, most

of the additionally defined macros can be reused for other ICM implementations

which reduces the implementation effort and eases compiler maintenance.

78 Chapter 4. Compilation of SAC Programs into Generic Code

ASSIGN(B :σ, A :τ)

τ∈TSCL

CHECK_MIRROR(B :σ, A :τ)

ALLOC(B :σ, [])

ASSIGN_DATA(B :σ, A :τ)

otherwise

CHECK_MIRROR(B :σ, A :τ)

UPDATE_MIRROR(B :σ, A :τ)

ASSIGN_DESC(B :σ, A :τ)

UPDATE_DESC(B :σ, A :τ)

ASSIGN_DATA(B :σ, A :τ)

CHECK_MIRROR(B :σ, A :τ)

σ∈TAUD

/* noop */

σ∈TSCL σ∈TAKS

RT_CHECK(READ_DIM(B :σ) = READ_DIM(A :τ))

RT_CHECK(READ_SIZE(B :σ) = READ_SIZE(A :τ))

RT_CHECK(READ_SHP(B :σ, i) = READ_SHP(A :τ , i)) ,

i ∈ {0, . . . ,A_dim− 1}

σ∈TAKD

RT_CHECK(READ_DIM(B :σ) = READ_DIM(A :τ))

UPDATE_MIRROR(B :σ, A :τ)

σ∈TSCL σ∈TAKS

/* noop */

σ∈TAKD

MIRROR_SIZE(B :σ) = READ_SIZE(A :τ)

MIRROR_SHP(B :σ, i) = READ_SHP(A :τ , i) ,

i ∈ {0, . . . ,A_dim− 1}

σ∈TAUD

MIRROR_DIM(B :σ) = READ_DIM(A :τ)

MIRROR_SIZE(B :σ) = READ_SIZE(A :τ)

Figure 4.10: Implementation of the intermediate code macro ASSIGN

(first part).

4.3. Code Generation 79

ASSIGN_DESC(B :σ, A :τ)

σ∈TSCL

/* noop */

otherwise

B_desc = A_desc;

UPDATE_DESC(B :σ, A :τ)

τ�σ

/* noop */

τ∈TAKS ∧
σ∈TAKD

DESC_SIZE(B :σ) = READ_SIZE(A :τ)

DESC_SHP(B :σ, i) = READ_SHP(A :τ , i) ,

i ∈ {0, . . . ,A_dim− 1}

τ∈TAKS ∧
σ∈TAUD

DESC_DIM(B :σ) = READ_DIM(A :τ)

DESC_SIZE(B :σ) = READ_SIZE(A :τ)

DESC_SHP(B :σ, i) = READ_SHP(A :τ , i) ,

i ∈ {0, . . . ,A_dim− 1}

τ∈TAKD ∧
σ∈TAUD

DESC_DIM(B :σ) = READ_DIM(A :τ)

ASSIGN_DATA(B :σ, A :τ)

τ∈TSCL

∧ σ /∈TSCL

B[0] = A;

τ /∈TSCL ∧
σ∈TSCL

B = A[0];

ADJUST_RC(A :τ , −1)

otherwise

B = A;

Figure 4.11: Implementation of the intermediate code macro ASSIGN

(second part).

80 Chapter 4. Compilation of SAC Programs into Generic Code

4.4 About the Backend Implementation

The compilation scheme described in this chapter has been fully integrated

into the existing SAC compiler.5 The compiler is written in ANSI C, consists

of approximately 270.000 lines of source code, and has been under constant

development since 1995.

In order to integrate the new compiler backend, the following tasks have

been completed:

• A new compiler phase has been implemented which creates the wrapper

functions needed to resolve function overloading (approximately 2.500
lines of source code).

• The new code generator has been implemented (approximately 40.000
lines of source code).

• The high-level code optimizations already integrated into the compiler

have been initially invented in a non-generic setting where all arrays were

supposed to have statically known shapes. Some of these (e. g. variable

propagation, index vector elimination) have been generalized in order to

be applicable to generic programs as well.

• The existing private heap manager for SAC programs has been adapted

to the new array representations used.

• The existing runtime library needed for multi-threaded program execu-

tion has been modified to meet the requirements of the new backend.

• The existing interfaces between the languages SAC and C (“calling C

functions from SAC programs” and “calling SAC functions from C pro-

grams”) have been adapted to the new array representations used.

• The new compiler release has been tested on a large suite of SAC pro-

grams for several different combinations of hardware platforms and op-

erating systems (UltraSPARC/Solaris, Intel x86/Linux, DEC Alpha/AIX,

Mac PowerPC/Mac OS X, Intel x86/NetBSD).

However, owing to time limitations, some parts of the compiler are still

incomplete or need further improvements:

5The source code of the SAC compiler as well as binary distributions for several dif-

ferent hardware platforms are available via WWW on the homepage of the SAC project:

http://www.sac-home.org/ .

4.4. About the Backend Implementation 81

• The runtime performance of the code generated by the compiler backend

critically depends on the quality of the type inference system — the more

specific the inferred shapes, the better the generated code. However, the

recent revision of the type inference system delivers suboptimal array

types in certain situations. Take as an example the following SAC code

fragment:

sv = [10,10];

B = genarray(sv, 0); .

Having inferred that sv has type int[2] does not suffice to deduce that B

has type int[10, 10]. Instead, the value of sv must be taken into account

as well. For this purpose it would be useful to extend the hierarchy of

array types by a fifth type category: arrays with known shape and known

value.

• For the time being, the compiler uses a rather naïve strategy for func-

tion specialization only. Traversing SAC programs from outermost to in-

nermost, the compiler specializes all functions with respect to the types

involved until the number of instances exceeds a predefined bound. Un-

fortunately, this may lead to very unfavorable results. For instance, ap-

plying the function Det (see Figure 2.8) to an argument of shape [10, 10]
would trigger the compiler to build specializations for argument shapes

[9, 9], [8, 8], [7, 7], and so on. But in order to get utmost runtime perfor-

mance, it would be much more promising to build instances with small

shapes first (i. e. [3, 3], [4, 4], [5, 5], etc.) since these instances are pre-

dominantly used during the computation and offer much better potential

for code optimizations (e. g. with-loop unrolling). Therefore, the SAC

compiler provides means to control the function specialization explicitly

through program annotations. Since this contradicts the ideals of high-

level declarative programming, an optimized implicit control strategy for

function specialization is most desirable.

• Some of the high-level code optimizations are not yet implemented for ar-

rays of unknown shape. In principle, many of these optimizations could

be generalized in order to be applicable to generic programs as well.

However, especially for rather complex optimizations like with-loop fold-

ing this requires further research and programming effort.

• Careful examination of the output of the code generator reveal the de-

mand for some low-level optimizations. Consider as an example explicit

accesses to shape components of an array, i. e. nestings of the primitive

operations shape and sel:

82 Chapter 4. Compilation of SAC Programs into Generic Code

a = sel([i], shape(A)); .

During the high-level code optimization phase such nestings are trans-

formed into the following code:

sv = shape(A);

a = sv{i}; .

Here, the shape vector [i] has been replaced by a scalar, but if the shape

of A is statically unknown, their is no way to eliminate the array sv as

well at this stage of compilation. Nevertheless, sv is superfluous since

the demanded shape component could be read directly from the array

representation by means of a single intermediate code instruction:

a = READ_SHP(A, i); .

This optimization is particularly important for wrapper functions which

often contain lots of these shape accesses (e.g. Figure 4.2, lines 18 ff.).

Chapter 5

Performance Evaluation

This chapter evaluates the runtime behavior of the code generated by the new

compilation scheme described in the preceding chapter.

Note here, that these performance measurements are fairly preliminary

since they are based on rather simple SAC programs only. However, the tem-

porary shortcomings of the current compiler implementation (as mentioned in

Section 4.4) render the use of more complex examples impossible.

Nevertheless, all measurements have been performed on two different hard-

ware platforms:

• A Sun UltraSPARC running Solaris-8, using the Sun C compiler (cc v5.2)

as backend compiler. In the following, this platform will be denoted as

UltraSPARC/Solaris.

• A Intel PentiumPro running Linux (Kernel v2.4.20), using the GNU C

compiler (gcc v3.3). This platform will be denoted as i686/Linux.

The performance evaluation is intended to validate three major claims of

this thesis:

• The design decision to use four different array representations during

code generation leads to substantial runtime improvements. The benefit

achieved by using individual representations for each type category easily

outweighs the converting costs.

• Static shape inference and function specialization matter. The more spe-

cific the inferred shapes of a SAC program the better is the runtime per-

formance of the generated C code. Hence, using the whole hierarchy of

array types is essential for obtaining utmost runtime performance.

83

84 Chapter 5. Performance Evaluation

• The compilation scheme developed here generates code with a compet-

itive runtime performance even if static shape inference fails for some

parts of the source program.

Section 5.1 measures the costs of converting arrays from one representation

into another. Subsequently, Section 5.2 analyses the runtime behavior of each

primitive array operation depending on the type category of the argument ar-

ray and depending on the array representations used for the generated code.

Finally, Section 5.3 evaluates the function Det which has been used as running

example in the preceding sections. Again, runtimes are measured depending

on the array representations used for the generated code. Moreover, the impact

of function specialization is investigated.

5.1 Conversion of Array Representations

An array has to be converted from one representation into another, only if an

assignment of the form

B :σ = A :τ ;

occurs in the SAC code. The representations used for source and target array

depend on the type categories (TSCL, TAKS, TAKD, TAUD) of which the types

τ and σ are elements. Hence, with respect to type categories 16 different

combinations are possible. However, some of these combinations are illegal.

If one of the arrays is a scalar, the other array should be a (potential) scalar

as well — situations like τ ∈ TAKS and σ ∈ TSCL, which will definitely cause

a type error at runtime, are sorted out by the type inference system already.

Thus, 12 legal combinations remain — among these 3 combinations on scalars

and 9 combinations on non-scalars.

The runtime demand of such an assignment depending on the type category

of the source (A) and the target array (B) is depicted in Figure 5.1 (UltraSPARC/

Solaris) and Figure 5.2 (i686/Linux). Note here, that the measurements are

performed for a variable A which represents an integer array of shape [10, 10, 10]
in all non-scalar cases.1

1The conversion costs depend solely on the size of the array descriptors involved (see defini-

tion of the intermediate code macro ASSIGN in Figure 4.10). Hence, the costs are proportional

to the dimension of A.

5.1. Conversion of Array Representations 85

309.6

13.40
0.65

10.20

0.00

50.00

100.00

150.00

200.00

250.00

300.00

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)
ty

p
e

ca
te

g
o
ry

o
f

a
rg

u
m

e
n

t

source

target

TSCL

TSCL

TAKS

TAKS

TAKD

TAKD

TAUD

TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

m
in

.
a
rra

y
re

p
r.

A
K

S
A

K
D

A
U

D

Figure 5.1: Time demand of converting the array representations

on UltraSPARC/Solaris.

42.60

5.10 0.75

3.65

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)
ty

p
e

ca
te

g
o
ry

o
f

a
rg

u
m

e
n

t

source

target

TSCL

TSCL

TAKS

TAKS

TAKD

TAKD

TAUD

TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

m
in

.
a
rra

y
re

p
r.

A
K

S
A

K
D

A
U

D

Figure 5.2: Time demand of converting the array representations

on i686/Linux.

86 Chapter 5. Performance Evaluation

Both figures indicate that the conversion costs are significant in four cases

only: TAUD =TSCL, TAUD =TAKS, TAUD =TAKD, and TAKD =TAKS. The first case

mentioned is by far the most expensive one since it requires new descriptor

memory to be allocated. Nevertheless, the runtime results given in the follow-

ing sections will show that the benefits achieved by individual array represen-

tations easily outweigh this overhead.

5.2 Primitive Array Operations

The next runtime measurements are based on the primitive array operations

provided by SAC. Again, let the variable A represent an integer array of shape

[10, 10, 10]. The code segments2 to be evaluated are defined as follows:

• Computing the dimension of the array A:

B = dim(A :τ); .

• Computing the shape of the array A:

B = shape(A :τ); .

• Performing a reshape operation on the array A:

sv = [100,10];

B = reshape(sv, A :τ);

.

Note that reshape is applied to the last reference of A, hence, the opera-

tion is performed as destructive update. Otherwise, the runtime demand

for copying the array would dominate the impact of shape inference and

individual array representations.

• Selecting an element of the array A:

iv = [

dim(A :τ)
︷ ︸︸ ︷

3, . . . ,2];

B = sel(iv, A :τ);

.

2Runtime costs of the surrounding program context, such as memory allocation for the array

A, have been eliminated.

5.2. Primitive Array Operations 87

To minimize the impact of the internal hardware cache(s), the measure-

ment is repeated several times with random values for the index vector

iv.

• Modifying an element of the array A:

iv = [

dim(A :τ)
︷ ︸︸ ︷

4, . . . ,7];

B = modarray(A :τ , iv, 16);

.

Again, the value of iv is chosen by random, and modarray is applied to

the last reference of A in order to allow a destructive update.

The preceding section has inferred the runtime overhead which is intro-

duced by defining individual array representations for each type category. Now,

the examples given above are well suited to determine the benefit of this design

decision. In order to do so, a runtime flag has been incorporated into the SAC

compiler which allows to restrict the set of array representations to be used.

The four representations can be ordered with respect to generality. The SCL-

and the AKS-representation are applicable solely for the type categories TSCL

and TAKS respectively. The AKD-representation can be used for TAKS as well as

TAKD, whereas the AUD-representation is applicable for all categories. Hence,

the following four scenarios are conceivable:

• The compiler uses all four array representations. This is the default sce-

nario.

• The compiler uses the SCL-, AKD-, and AUD-representation only. Arrays

of type ∈ TAKS are implemented using the AKD-representation.

• The compiler uses the SCL- and the AUD-representation only. Arrays of

type ∈ TAKS ∪ TAKD are implemented using the AUD-representation.

• The compiler uses the AUD-representation only.

It is out of question that the last scenario causes dramatic performance losses

(multiple orders of magnitude!). Most of the optimization techniques imple-

mented in the SAC compiler try to replace arrays by sets of scalars wherever

possible. Implementing all scalars as boxed arrays would surely pervert these

measures. Hence, only the first three scenarios will be looked at. These are

characterized by the minimal (i. e. most specific) representation available for

88 Chapter 5. Performance Evaluation

non-scalar arrays. That is AKS for the first, AKD for the second, and AUD for

the third scenario.

Another criterion which potentially affects the runtime efficiency of the gen-

erated code is the type which has been inferred for the argument A. The more

specific the inferred shape, the better the potential for high-level code opti-

mizations during compilation. Therefore, the measurements are performed

with three different values for τ :

• τ ≡ int[10, 10, 10] ∈ TAKS ,

• τ ≡ int[•,•,•] ∈ TAKD ,

• τ ≡ int[+] ∈ TAUD .

The measurement results are depicted in the figures on the following pages.

Each figure consists of three groups of bars, where the groups correspond to the

type category of the argument A, and the bars within each group correspond to

the minimal array representation used for the generated code.

In general, both criteria have a significant impact on the runtime efficiency.

Static shape inference reduces the time demand up to a factor of 3 on Ultra-

SPARC/Solaris and up to a factor of 1.5 on i686/Linux. For real world ap-

plications this effect will be considerably higher since the most promising code

optimizations (e. g. common subexpression elimination, constant folding, with-

loop folding) are relevant for sequences of multiple array operations only. The

impact of the tailor-made array representations is in most cases much smaller.

Nevertheless, the time demand of each array operation — apart from the rather

trivial operation dim — is decreased by at least 5 % which easily outweighs the

runtime overhead of a single conversion operation.

The evaluation results in more detail: Figures 5.3 and 5.4 depict the results

for the operation dim on UltraSPARC/Solaris and i686/Linux. Having inferred

the dimension of A, the compiler is able to replace the whole operation by the

constant value 3. Hence, the time demand is negligible in these cases.

The time demand of the operation shape is given in Figures 5.5 and 5.6.

This operation returns a vector which is filled with the shape components of

A. If A is implemented using an AUD-representation — i. e. the type category

of A is TAUD or the minimal array representation used is AUD — these shape

components are not found in mirror variables but must be read from the de-

scriptor. Since this requires costly accesses to the main memory, a substantial

loss of runtime efficiency occurs.

5.2. Primitive Array Operations 89

Figures 5.7 and 5.8 show the runtimes of the operation reshape. Since

reshape is applied to the last reference of A, the operation can more or less be

implemented as a simple assignment (see compilation rule on page 67). How-

ever, the variations in time demand are much more dramatic than expected.

This effect is most likely caused by systematic cache conflicts: Small modifica-

tions with respect to memory accesses could have a considerable impact on the

efficiency of the internal hardware cache(s) which in turn leads to dispropor-

tionate slowdowns.

The operation sel is addressed in Figures 5.9 and 5.10. If the compiler

succeeds in inferring at least the dimension of A, the index vector iv is replaced

by a scalar during code optimizations (see index vector elimination on page 29)

which reduces the runtimes by 40 % on UltraSPARC/Solaris and by 12 % on

i686/Linux. In case τ ∈ TAUD the length of iv is statically undecidable, hence,

index vector elimination is not applicable.

Finally, Figures 5.11 and 5.12 depict the runtimes for the operation

modarray. Again, index vector elimination is performed for τ ∈ TAKS ∪ TAKD

which leads to a performance gain of up to 70 % and 20 % respectively.

90 Chapter 5. Performance Evaluation

2.20 2.20 2.25

0.00

0.50

1.00

1.50

2.00

2.50

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L
TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.3: Time demand of the primitive operation dim

on UltraSPARC/Solaris.

0.75 0.75 0.75

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L

TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.4: Time demand of the primitive operation dim on i686/Linux.

5.2. Primitive Array Operations 91

126.5 131.0

156.0

123.8
134.5

188.8
198.0 195.0 200.3

0.0

50.0

100.0

150.0

200.0

250.0

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L

TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.5: Time demand of the primitive operation shape

on UltraSPARC/Solaris.

33.75
36.00

38.50

34.50
37.00

40.75

37.50 37.75

42.25

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L

TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.6: Time demand of the primitive operation shape on i686/Linux.

92 Chapter 5. Performance Evaluation

60.0

310.0

410.0

70.0

350.0

460.0

170.0

450.0 460.0

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L
TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.7: Time demand of the primitive operation reshape

on UltraSPARC/Solaris.

34.0

44.0

52.0

40.0

48.0

54.0
50.0

60.0

76.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L

TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.8: Time demand of the primitive operation reshape

on i686/Linux.

5.2. Primitive Array Operations 93

302.0 313.0 314.0 306.0
320.0 327.0

500.0 510.0 517.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L

TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.9: Time demand of the primitive operation sel

on UltraSPARC/Solaris.

172.0 178.0 179.0
173.0

179.0 180.0
194.0 200.0 204.0

0.0

50.0

100.0

150.0

200.0

250.0

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L

TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.10: Time demand of the primitive operation sel on i686/Linux.

94 Chapter 5. Performance Evaluation

211.0 217.0 219.0

335.0 343.0 353.0

532.0 538.0 545.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L
TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.11: Time demand of the primitive operation modarray

on UltraSPARC/Solaris.

98.0

107.0
111.0

105.0
109.0 112.0

124.0
128.0

136.0

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

P
S
fra

g
rep

la
cem

en
ts

ru
n

ti
m

e
(n

s)

ru
n

tim
e

(s)

type category of argument

so
u

rce
ta

rg
e
t

T
S
C

L

TAKS TAKD TAUD

sp
ecifi

c
g
en

eric
g
en

eric
2

g
en

eric
3

g
en

eric
4

g
en

eric
5

min.
array
repr.

AKS

AKD

AUD

Figure 5.12: Time demand of the primitive operation modarray

on i686/Linux.

5.3. A Case Study: Determinant 95

5.3 A Case Study: Determinant

Having examined the runtime behavior of the code generated for isolated SAC

assignments, this chapter evaluates a complete real-world application — a pro-

gram which computes the determinant of a 10×10 array:

int main()

{

int[10,10] a;

int det;

a = . . . ;

det = Det(a);

return(det);

} ,

where the function Det is defined as depicted in Figure 2.8 on page 20.

The performance evaluation is intended to investigate the overall impact of

using tailor-made representations for the different type categories. The ques-

tion is, whether the aggregated performance gains and losses really lead to sig-

nificant runtime improvements or not. Therefore, the measurements are again

performed with three different minimal array representations.

Moreover, the example given above is well-suited to demonstrate that func-

tion specialization is essential to create code with utmost runtime efficiency.

For this purpose, during compilation five different strategies for function spe-

cialization are used:

• The compiler builds no specializations at all, i. e. only the original two

instances of the function Det are available. Whenever Det is applied to

an argument whose shape is not [2, 2], the generic instance is used. In

the following, this strategy will be denoted as “generic”.

• The compiler builds a single specialization of the function Det for argu-

ment shape [3, 3]. In the following, this strategy will be called “generic 3”.

• The compiler builds specializations for argument shapes [3, 3] and [4, 4].
This strategy will be called “generic 4”.

• The compiler builds specializations for argument shapes [3, 3], [4, 4], and

[5, 5]. This strategy will be denoted as “generic 5”.

96 Chapter 5. Performance Evaluation

• The compiler builds instances for all needed argument shapes [10, 10],
. . . , [3, 3]. As a consequence, all array variables have statically known

shapes and function overloading can be resolved statically. This strategy

will be called “specific”.

The results of the runtime measurements are shown in Figures 5.13 and

5.14. The five groups of bars relate to the specialization strategy applied,

whereas the color of each bar indicates the minimal array representation used.

The additional marks on the vertical axis at 2.11s and 0.19s respectively denote

the time demand of an equivalent C implementation of the Det program.

The runtime figures show that the tailor-made array representations have

a significant impact on the execution times of the generated code since they

decreases the execution times by 14−20 % (8−28 %) on UltraSPARC/Solaris

(on i686/Linux).

Furthermore, the measurements demonstrate that specializing functions is

indeed crucial for getting best possible runtime performance. The more special-

izations are built by the compiler, the lower is the time demand of the generated

code. The generic version without any specializations is about a factor of 5.0
(8.0) slower than the fully specialized version. Building one or two specialized

instances of the function Det reduces the slowdown to a factor of 2.3 (3.0) or

1.4 (1.8) respectively.

However, it is also indicated that by means of the new compilation scheme

even generic functions can be compiled into code with an acceptable runtime

performance. Note, that it suffices to build a single (two) specialization(s) of

the function Det to get approximately the same execution time as the C imple-

mentation. If the compiler adds additional specializations, the SAC implemen-

tation is significantly faster than the C implementation.

It should be noted that the algorithm for determinant computation used

here has a factorial complexity. In practice, other and much more effi-

cient algorithms like matrix orthogonalization are predominantly used instead

[Stoe99, PTVF92]. Nevertheless, the Laplace expansion offers the opportunity

to investigate the runtime behavior of a function, whose argument shape is

changing with each recursive call, in a very clean setting. In contrast to other

algorithms of this kind — the most prominent example being multigrid relax-

ation3 — it is easy to describe and not burdened with any distracting frills.

3Multigrid relaxation is used to approximate solutions for discrete Poisson equations. Each

iteration step consists of relaxation steps and smoothing steps which are recursively embedded

within operations to coarsen and refine grid granularities [HT82,Bran84,Hack85].

5.3. A Case Study: Determinant 97

1.00 1.06
1.23

1.09 1.17
1.35 1.38

1.52
1.75

2.30
2.53

2.87

5.13

5.47

5.98

0.00

1.00

2.00
2.11

3.00

4.00

5.00

6.00

P
S
fra

g
rep

la
cem

en
ts

ru
n

tim
e

(n
s)

ru
n

ti
m

e
(s

)

ty
p

e
ca

te
g
o
ry

o
f

a
rg

u
m

e
n

t
so

u
rce

ta
rg

e
t

T
S
C

L
T

A
K

S
T

A
K

D
T

A
U

D

specific generic

g
en

eric
2

generic 3generic 4generic 5

min.
array
repr.

AKS

AKD

AUD

Figure 5.13: Time demand of computing the determinant of a 10×10
array on UltraSPARC/Solaris.

0.12 0.13 0.13 0.16 0.17 0.18
0.22 0.23 0.24

0.36

0.43
0.47

1.08

1.39

1.50

0.00

0.19
0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

P
S
fra

g
rep

la
cem

en
ts

ru
n

tim
e

(n
s)

ru
n

ti
m

e
(s

)

ty
p

e
ca

te
g
o
ry

o
f

a
rg

u
m

e
n

t
so

u
rce

ta
rg

e
t

T
S
C

L
T

A
K

S
T

A
K

D
T

A
U

D

specific generic

g
en

eric
2

generic 3generic 4generic 5

min.
array
repr.

AKS

AKD

AUD

Figure 5.14: Time demand of computing the determinant of a 10×10
array on i686/Linux.

98 Chapter 5. Performance Evaluation

Even so, the same performance evaluation has been done for a shape-

invariant SAC implementation of multigrid relaxation as well. Unfortunately,

owing to the mentioned limitations of the current compiler implementation, the

obtained results are unsatisfactory and not worth to be depicted here. However,

since former runtime measurements on multigrid in a non-generic setting have

achieved excellent results [Grel02], it can be assumed that an improved revi-

sion of the type inference system will lead to runtime figures similar to those

for the Laplace expansion.

Chapter 6

Conclusion

One of the key features of array processing languages is the support for shape-

invariant programming, i. e. all array operations can be defined in a generic way

that allows arguments to have arbitrary dimension and size. The advantages

of this programming technique are manifold. First, it eases program develop-

ment since complicated loop nestings as well as the explicit and error-prone

specification of array indices can often be avoided. Moreover, it improves the

generality of programs and thus simplifies reuse and maintenance of existing

programs.

However, when trying to compile such generic array operations into effi-

ciently executable code, static knowledge of exact array shapes is essential.

Therefore, modern compilers try to infer the shapes of all arrays used in a pro-

gram.

Unfortunately, static shape inference is generally undecidable, e. g. if input

data have unknown shapes, or if a recursive function is applied to an argument

whose shape is changing with each recursive call. Hence, recent compilers

either rule out all programs for which shape inference fails, or they perform no

shape inference at all. In the first case the expressive power of the language is

significantly restricted, in the latter case the generated code has a poor runtime

performance.

This thesis develops a new compilation scheme for the language SAC which

combines these two approaches in order to avoid their individual shortcomings.

It generates shape-specific code whenever exact shapes can be statically inferred

and generates more generic code, otherwise. The basic idea is to make use of

a hierarchy of array types with different levels of shape information — the

most specific array types specify an exact shape, whereas more general types

99

100 Chapter 6. Conclusion

prescribe an exact dimension only or contain no shape information at all — and

to translate these types into a corresponding hierarchy of array representations.

Since the number of different array shapes is infinite, this hierarchy of array

types is unbound. Nevertheless, it can be classified into four categories of types:

scalar arrays, non-scalar arrays with known shape, non-scalars with known

dimension but unknown extent, and non-scalars with unknown dimension.

Compiling shape-invariant SAC programs into efficiently executable code is

done as follows: At first, the compiler infers the types of all local variables. In

order to achieve utmost potential for code optimizations, the compiler tries to

infer types as shape-specific as possible. Therefore, generically defined func-

tions are specialized with respect to the required argument shapes.

Subsequently, the compiler has to resolve function overloading. In SAC,

functions can be overloaded not only with respect to base types but also with

respect to shapes, i. e. SAC programs might contain shape-specific as well as

generic instances of a single function. If static shape inference fails, it may

not be statically decidable which instance of a function has to be used for a

given application. Hence, the compiler must generate additional code which

performs appropriate type checks and chooses the matching instance at run-

time. In principle, for each function application a tailor-made code fragment

is needed which resolves the overloading. However, the approach suggested

in this thesis achieves this by means of an elegant high-level code transforma-

tion. For each overloaded function a generic wrapper, which is also written

in SAC, is generated that resolves the overloading for the most general case

only. Afterwards, the code of this wrapper function is individually adapted to

each function application by means of the usual code optimizations already

integrated into the compiler.

In the final compilation step the optimized SAC code is transformed into

semantically equivalent C code. An important issue in this context is to find

an appropriate C representation for SAC arrays. In order to get code with an

acceptable runtime performance, it is essential that arrays which are identified

as scalars are represented in C by scalars as well. Other SAC arrays could

be uniquely implemented in C by means of a descriptor and a data vector.

However, performance measurements indicate that the runtime demand of the

generated code can be further reduced by using not only two but four different

array representations — one for each type category.

Unfortunately, using multiple array representations in a generic setting has

a dramatic impact on the complexity of the code generator. Primitive array

operations or generically defined functions are applicable to arrays of any type

101

category. Therefore, it is often necessary to convert arrays from one represen-

tation into another. Thus, the array representations are defined in a way that

minimizes these conversion costs. Moreover, the generated code must be indi-

vidually adapted to the array representations involved. For a primitive function

which requires three arguments with four different representations each, the

code generator must take up to 43 = 64 different cases into account. This com-

plexity problem is solved by means of a sophisticated transformation scheme

which uses multiple layers of intermediate code macros.

In order to demonstrate the effectiveness of the compilation scheme, several

runtime measurements are performed. The measurements confirm that the use

of four instead of two different array representations has a significant impact

on the runtime efficiency of the generated code. The obtained performance

gain easily outweighs the costs of converting arrays from one representation

into another. On average, the overall runtime demand is reduced by at least

10 %.

However, the impact of static shape inference and function specialization is

much stronger. Even for isolated primitive array operations it reduces the time

demand by up to a factor of 3. For real world applications, like determinant

computation or relaxation, the effect is considerably higher since sequences of

multiple array operations offer higher potential for code optimizations.

The promising evaluation results notwithstanding, there are a few problems

left that still need to be addressed. For the time being, the SAC compiler uses

a suboptimal type inference algorithm as well as a rather naïve strategy for

function specialization. As a consequence, the type inference system delivers

unfavorable results in some situations. In order to exploit the full potential of

the new compiler backend, it is necessary to eliminate these shortcomings.

Furthermore, the high-level code optimizations integrated into the compiler

have been initially invented in a non-generic setting where all arrays were sup-

posed to have statically known shapes. In principle, many of these optimiza-

tions could be generalized in order to be applicable to generic programs as

well. However, owing to time limitations, especially rather complex optimiza-

tions like with-loop folding are sofar only implemented for arrays of known

shape.

102 Chapter 6. Conclusion

Bibliography

[ABM+92] J. C. Adams, W. S. Brainerd, J. T. Martin, et al.: Fortran-90 Hand-

book: Complete ANSI/ISO Reference. McGraw-Hill, 1st edition,

1992. ISBN 0-07-000406-4.

[AK02] R. Allen, K. Kennedy: Optimizing Compilers for Modern Architec-

tures: A Dependence-Based Approach. Morgan Kaufmann, 1st edi-

tion, 2002. ISBN 1-55860-286-0.

[ANSI78] American National Standards Institute: ANSI Fortran X3.9–1978.

Technical Report ANSI X3.9-1978, American National Standards

Institute, 1978.

[Appe98] A. W. Appel: Modern Compiler Implementation in C. Cambridge

University Press, 1st edition, 1998. ISBN 0-521-58390-X.

[ASU86] A. V. Aho, R. Sethi, J. D. Ullman: Compilers: Principles, Techniques,

and Tools. Series in Computer Science. Addison-Wesley, 1st edition,

1986. ISBN 0-201-10194-7.

[Bare84] H. P. Barendregt: The Lambda Calculus: Its Syntax and Semantics,

Vol. 103 of: Studies in Logics and the Foundations of Mathematics.

North-Holland, 2nd edition, 1984. ISBN 0-444-86748-1.

[BCOF91] A. P. W. Böhm, D. C. Cann, R. R. Oldehoeft, J. T. Feo: Sisal Ref-

erence Manual Language Version 2.0. CS 91-118, Colorado State

University, Fort Collins, Colorado, USA, 1991.

[Bern93] R. Bernecky: The Role of APL and J in High-Performance Computa-

tion. In E. M. Anzalone (Ed.): Proceedings of the Array Processing

Language Conference (APL ’93), Toronto, Canada. Vol. 24(1) of:

APL Quote Quad. ACM Press, 1993, pp. 17–32.

103

104 Bibliography

[Bern97] R. Bernecky: APEX: The APL Parallel Executor. Master’s Thesis,

University of Toronto, Canada, 1997.

[BGS94] D. F. Bacon, S. L. Graham, O. J. Sharp: Compiler Transformations

for High-Performance Computing. ACM Computing Surveys, 26(4),

pp. 345–420, 1994.

[Bird98] R. Bird: Introduction to Functional Programming using Haskell. Se-

ries in Computer Science. Prentice Hall, 2nd edition, 1998. ISBN

0-13-484346-0.

[Bran84] A. Brandt: Multigrid Methods: 1984 Guide. Technical Report, The

Weizmann Institute of Science, Department of Applied Mathemat-

ics, Rehovot, Israel, 1984.

[Brow85] J. Brown: Inside the APL2 Workspace. ACM Quote Quad, 15,

pp. 277–282, 1985.

[BSMM99] I. N. Bronstein, K. A. Semendjajew, G. Musiol, H. Mühlig: Taschen-

buch der Mathematik. Harri Deutsch, 4th edition, 1999. ISBN

3-8171-2004-4.

[Budd88] T. Budd: An APL Compiler. Springer, 1st edition, 1988. ISBN 0-

387-96643-9.

[Burk96] C. Burke: J and APL. Iverson Software Inc., Toronto, Canada,

1996.

[BW88] R. Bird, P. Wadler: Introduction to Functional Programming. Series

in Computer Science. Prentice Hall, 1st edition, 1988. ISBN 0-13-

484197-2.

[Cann89] D. C. Cann: Compilation Techniques for High Performance Applica-

tive Computation. Technical Report CS-89-108, Lawrence Liver-

more National Laboratory, Livermore, California, USA, 1989.

[Cann92] D. C. Cann: Retire Fortran? A Debate Rekindled. Communications

of the ACM, 35(8), pp. 81–89, 1992.

[Cann93] D. C. Cann: The Optimizing Sisal Compiler (Version 12.0).

Lawrence Livermore National Laboratory, Livermore, California,

USA, 1993. Part of the Sisal distribution.

Bibliography 105

[CE95] D. C. Cann, P. Evripidou: Advanced Array Optimizations for High

Performance Functional Languages. IEEE Transactions on Parallel

and Distributed Systems, 6(3), pp. 229–239, 1995.

[CF58] H. B. Curry, R. Feys: Combinatory Logic (Vol. 1). Studies in Logics

and the Foundations of Mathematics. North-Holland, 1st edition,

1958. ISBN 0-7204-2208-6.

[Cohe81] J. Cohen: Garbage Collection of Linked Data Structures. ACM Com-

puting Surveys, 13(3), pp. 341–367, 1981.

[CW85] L. Cardelli, P. Wegner: On Understanding Types, Data Abstraction,

and Polymorphism. ACM Computing Surveys, 17(4), pp. 471–522,

1985.

[DO86] G. C. Driscoll, D. L. Orth: Compiling APL: The Yorktown APL Trans-

lator. IBM Journal of Research and Development, 30(6), pp. 583–

593, 1986.

[FH88] A. J. Field, P. G. Harrison: Functional Programming. International

Computer Science Series. Addison-Wesley, 1st edition, 1988. ISBN

0-201-19249-7.

[FMSD95] J. T. Feo, P. J. Miller, S. K. Skedzielewski, S. M. Denton: Sisal-90

User’s Guide. Lawrence Livermore National Laboratory, Livermore,

California, USA, 1995.

[FO95] S. M. Fitzgerald, R. R. Oldehoeft: Update-in-Place Analysis for True

Multidimensional Arrays. In A. P. W. Böhm, J. T. Feo (Eds.): High

Performance Functional Computing. 1995, pp. 105–118.

[GKS00] C. Grelck, D. Kreye, S.-B. Scholz: On Code Generation for Multi-

Generator WITH-Loops in SAC. In P. Koopman, C. Clack (Eds.): Im-

plementation of Functional Languages, 11th International Work-

shop (IFL ’99), Lochem, The Netherlands, Selected Papers. Vol.

1868 of: Lecture Notes in Computer Science. Springer, 2000, pp.

77–94. ISBN 3-540-67864-6.

[Grel96] C. Grelck: Integration eines Modul- und Klassen-Konzeptes in

die funktionale Programmiersprache SAC — Single Assignment C.

Diploma Thesis, Institut für Informatik und Praktische Mathe-

matik, Universität Kiel, 1996.

106 Bibliography

[Grel01] C. Grelck: Implicit Shared Memory Multiprocessor Support for the

Functional Programming Language SAC — Single Assignment C.

PhD Thesis, Institute of Computer Science and Applied Mathemat-

ics, University of Kiel, Germany, 2001. ISBN 3-89722-719-3.

[Grel02] C. Grelck: Implementing the NAS Benchmark MG in SAC. In: Pro-

ceedings of the 16th International Parallel and Distributed Pro-

cessing Symposium (IPDPS 2002), Fort Lauderdale, Florida, USA.

IEEE Computer Society Press, 2002.

[Gron97] J. van Groningen: The Implementation and Efficiency of Arrays in

Clean 1.1. In W. E. Kluge (Ed.): Implementation of Functional

Languages, 8th International Workshop (IFL ’96), Bad Godesberg,

Germany, Selected Papers. Vol. 1268 of: Lecture Notes in Com-

puter Science. Springer, 1997, pp. 105–124. ISBN 3-540-63237-9.

[GS95] C. Grelck, S.-B. Scholz: Classes and Objects as Basis for I/O in SAC.

In T. Johnsson (Ed.): Proceedings of the 7th International Work-

shop on the Implementation of Functional Languages (IFL ’95).

Chalmers University of Technologie, Båstad, Sweden, 1995, pp.

30–44.

[GS00] C. Grelck, S.-B. Scholz: HPF vs. SAC — A Case Study. In A. Bode,

T. Ludwig, W. Karl, R. Wismüller (Eds.): Euro-Par 2000, Parallel

Processing, Proceedings of the 6th International Euro-Par Confer-

ence, Munich, Germany. Vol. 1900 of: Lecture Notes in Computer

Science. Springer, 2000, pp. 620–624. ISBN 3-540-67956-1.

[GS03] C. Grelck, S.-B. Scholz: Axis Control in SAC. In R. Peña, T. Arts

(Eds.): Implementation of Functional Languages, 14th Interna-

tional Workshop (IFL 2002), Madrid, Spain, Selected Papers. Lec-

ture Notes in Computer Science. Springer, 2003.

[Hack85] W. Hackbusch: Multi-Grid Methods and Applications, Vol. 4 of: Se-

ries in Computational Mathematics. Springer, 1st edition, 1985.

ISBN 3-540-12761-5.

[Hank94] C. Hankin: Lambda Calculi: A Guide for Computer Scientists. Grad-

uate Texts in Computer Science. Oxford University Press, 1st edi-

tion, 1994. ISBN 0-19-853840-5.

[HB85] P. Hudak, A. Bloss: The Aggregate Update Problem in Functional

Programming Systems. In: Proceedings of the 12th Symposium on

Bibliography 107

Principles of Programming Languages (POPL ’85), New Orleans,

Louisiana, USA. ACM Press, 1985, pp. 300–314.

[HB93] M. Haines, A. P. W. Böhm: Task Management, Virtual Shared Mem-

ory, and Multithreading in a Distributed Memory Implementation of

Sisal. In A. Bode, et al. (Eds.): Parallel Architectures and Lan-

guages Europe (PARLE ’93), Munich, Germany. Vol. 694 of: Lec-

ture Notes in Computer Science. Springer, 1993, pp. 12–23.

[HPFF97] High Performance Fortran Forum: High Performance Fortran Lan-

guage Specification V2.0, 1997.

[HS86] J. R. Hindley, J. P. Seldin: Introduction to Combinators and Lambda

Calculus, Vol. 1 of: London Mathematical Society Student Texts.

Cambridge University Press, 1st edition, 1986. ISBN 0-521-31839-

4.

[HT82] W. Hackbusch, U. Trottenberg (Eds.): Multigrid Methods: Proceed-

ings of the 1st European Multigrid Conference, Cologne, Germany,

Vol. 960 of: Lecture Notes in Mathematics. Springer, 1982. ISBN

0-387-11955-8.

[ISO84] International Standards Organization: International Standard for

Programming Language APL. ISO N8485, ISO, 1984.

[ISO93] International Standards Organization: Programming Language

APL, Extended. ISO N93.03, ISO, 1993.

[Iver62] K. E. Iverson: A Programming Language. John Wiley & Sons, 1st

edition, 1962. ISBN 0-471-43014-5.

[Jay98] C. B. Jay: The FISh Language Definition. http://www-staff.

socs.uts.edu.au/∼cbj/Publications/fishdef.ps.gz, 1998.

[Jay99] C. B. Jay: Programming in FISh. International Journal on Software

Tools for Technology Transfer, 2(3), pp. 307–315, 1999.

[JJ93] M. A. Jenkins, W. H. Jenkins: The Q’Nial Language and Reference

Manuals. Nial Systems Ltd., Ottawa, Canada, 1993.

[Klug92] W. E. Kluge: The Organization of Reduction, Data Flow and Control

Flow Systems. MIT Press, 1st edition, 1992. ISBN 0-262-61081-7.

108 Bibliography

[Knut97a] D. E. Knuth: The Art of Computer Programming (Vol. 1): Funda-

mental Algorithms. Addison-Wesley, 3rd edition, 1997. ISBN 0-

201-89683-4.

[Knut97b] D. E. Knuth: The Art of Computer Programming (Vol. 2): Seminu-

merical Algorithms. Addison-Wesley, 3rd edition, 1997. ISBN 0-

201-89684-2.

[Knut98] D. E. Knuth: The Art of Computer Programming (Vol. 3): Sorting

and Searching. Addison-Wesley, 2nd edition, 1998. ISBN 0-201-

89685-0.

[KR88] B. W. Kernighan, D. M. Ritchie: The C Programming Language.

Prentice Hall, 2nd edition, 1988. ISBN 0-13-110362-8.

[Krey98] D. Kreye: Zur Generierung von effizient ausführbarem Code aus

SAC-spezifischen Schleifenkonstrukten. Diploma Thesis, Institut für

Informatik und Praktische Mathematik, Universität Kiel, 1998.

[Krey02] D. Kreye: A Compilation Scheme for a Hierarchy of Array Types. In T.

Arts, M. Mohnen (Eds.): Implementation of Functional Languages,

13th International Workshop (IFL 2001), Stockholm, Sweden, Se-

lected Papers. Vol. 2312 of: Lecture Notes in Computer Science.

Springer, 2002, pp. 18–35. ISBN 3-540-43537-9.

[Kx98] Kx Systems: K Reference Manual Version 2.0. Kx Systems, Miami,

Florida, 1998.

[Lero02] X. Leroy: The Objective Caml System Release 3.06. INRIA, Rocquen-

court, France, 2002.

[LRW91] M. S. Lam, E. E. Rothberg, M. E. Wolf: The Cache Performance and

Optimizations of Blocked Algorithms. In: Proceedings of the 4th In-

ternational Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’91), Santa Clara, Cal-

ifornia, USA. ACM Press, 1991, pp. 63–74.

[MSA+85] J. R. McGraw, S. K. Skedzielewski, S. J. Allan, R. R. Oldehoeft,

et al.: Sisal: Streams and Iteration in a Single Assignment Language

(Reference Manual Version 1.2). M 146, Lawrence Livermore Na-

tional Laboratory, Livermore, California, USA, 1985.

[MTH90] R. Milner, M. Tofte, R. Harper: The Definition of Standard ML. MIT

Press, 1st edition, 1990. ISBN 0-262-63132-6.

Bibliography 109

[OCA86] R. R. Oldehoeft, D. C. Cann, S. J. Allan: Sisal: Initial MIMD Per-

formance Results. In W. Händler, et al. (Eds.): Conference on

Algorithms and Hardware for Parallel Processing (CONPAR ’86),

Aachen, Germany. Vol. 237 of: Lecture Notes in Computer Sci-

ence. Springer, 1986, pp. 120–127.

[Olde92] R. R. Oldehoeft: Implementing Arrays in Sisal 2.0. In: Proceedings

of the 2nd Sisal Users’ Conference, San Diego, California, USA.

Lawrence Livermore National Laboratory, 1992, pp. 209–222.

[PAM93] S. S. Pande, D. P. Agrawal, J. Mauney: Automatic Compiler for

a Parallel Functional Language on a Distributed Memory Machine.

Technical Report, North Carolina State University, Raleigh, North

Carolina, USA, 1993.

[PE01a] R. Plasmeijer, M. van Eekelen: Concurrent Clean 1.3.1 Language

Report. University of Nijmegen, The Netherlands, 2001.

[PE01b] R. Plasmeijer, M. van Eekelen: Concurrent Clean 2.0 Language Re-

port (Draft). University of Nijmegen, The Netherlands, 2001.

[Peyt03] S. L. Peyton Jones (Ed.): Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press, 1st edition, 2003.

ISBN 0-521-82614-4.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery: Numer-

ical Recipes in C. Cambridge University Press, 2nd edition, 1992.

ISBN 0-521-43108-5.

[Read89] C. Reade: Elements of Functional Programming. International Com-

puter Science Series. Addison-Wesley, 1st edition, 1989. ISBN 0-

201-12915-9.

[Schi93] H. Schildt (Ed.): The Annotated ANSI C Standard. McGraw-Hill,

1st edition, 1993. ISBN 0-07-881952-0.

[Scho96] S.-B. Scholz: Single Assignment C — Entwurf und Implementierung

einer funktionalen C-Variante mit spezieller Unterstützung shape-

invarianter Array-Operationen. PhD Thesis, Institut für Informatik

und Praktische Mathematik, Universität Kiel, 1996. ISBN 3-8265-

3138-8.

110 Bibliography

[Scho98a] S.-B. Scholz: A Case Study: Effects of WITH-Loop-Folding on the

NAS Benchmark MG in SAC. In C. Clack, T. Davie, K. Hammond

(Eds.): Implementation of Functional Languages, 10th Interna-

tional Workshop (IFL ’98), London, England, UK, Selected Papers.

Vol. 1595 of: Lecture Notes in Computer Science. Springer, 1998,

pp. 216–228. ISBN 3-540-66229-4.

[Scho98b] S.-B. Scholz: WITH-Loop-Folding in SAC — Condensing Consecu-

tive Array Operations. In C. Clack, T. Davie, K. Hammond (Eds.):

Implementation of Functional Languages, 9th International Work-

shop (IFL ’97), St. Andrews, Scotland, UK, Selected Papers. Vol.

1467 of: Lecture Notes in Computer Science. Springer, 1998, pp.

72–91. ISBN 3-540-64849-6.

[Scho01] S.-B. Scholz: A Type System for Inferring Array Shapes. In T. Arts,

M. Mohnen (Eds.): Proceedings of the 13th International Work-

shop on the Implementation of Functional Languages (IFL 2001).

Ericsson, Stockholm, Sweden, 2001, pp. 53–63.

[Scho03] S.-B. Scholz: Single Assignment C — Efficient Support for High-Level

Array Operations in a Functional Setting. Journal of Functional

Programming, 2003. Accepted for publication.

[SS88] S. Skedzielewski, R. J. Simpson: A Simple Method to Remove Ref-

erence Counting in Applicative Languages. Technical Report UCRL-

100156, Lawrence Livermore National Laboratory, Livermore, Cal-

ifornia, USA, 1988.

[SSM88] V. Sarkar, S. Skedzielewski, P. Miller: An Automatically Partition-

ing Compiler for Sisal. Technical Report UCRL-98289, Lawrence

Livermore National Laboratory, Livermore, California, USA, 1988.

[Stoe99] J. Stoer: Numerische Mathematik 1. Springer, 8th edition, 1999.

ISBN 3-540-66154-9.

[Wolf89] M. J. Wolfe: Iteration Space Tiling for Memory Hierarchies. In G. H.

Rodrigue (Ed.): Proceedings of the 3rd SIAM Conference on Par-

allel Processing for Scientific Computing (PPSC ’87), Los Angeles,

California, USA. SIAM, 1989, pp. 357–361.

