An Adaptive Compilation Framework
for Generic Data-Parallel Array Programming*

Clemens Grelck!, Tim van Deurzen!, Stephan Herhut?, and Sven-Bodo Scholz?

! University of Amsterdam, Institute of Informatics
Science Park 107, 1098 XG Amsterdam, Netherlands
c.grelck,t.vdeurzenQuva.nl
2 University of Hertfordshire, School of Computer Science
Hatfield, Herts, AL10 9AB, United Kingdom
{s.a.herhut,s.scholz}@herts.ac.uk

Abstract. Generic array programming abstracts from structural prop-
erties of arrays, such as rank (number of axes/dimensions) and shape
(number of element along each axis/dimension). This allows for abstract
program specifications and, as such, is desirable from a software engi-
neering perspective. However, generic programming in this sense does
have an adverse effect on runtime performance, at least when executed
naively. Static compiler analyses and transformations aim at reconciling
software engineering desires for generic code with runtime performance
requirements. However, they are bound to fail whenever the required
information is not available until runtime.

We propose a compilation framework that overcomes the inherent limi-
tations of static analysis by incrementally adapting a running program
to the structural properties of the arrays it operates on. This is achieved
by partial recompilation of code at runtime, when all structural proper-
ties of arrays are known, and dynamic relinking of the running program
with dynamically generated code. We sketch out the general compilation
framework architecture and provide some details on implementation is-
sues.

1 Introduction

Optimising compilers reconcile the programmer’s desire for generic, re-usable
programs adhering to software engineering principles such as abstraction and
composition and the necessities of executable code to achieve high runtime per-
formance in sequential and, increasingly important, (implicitly) parallel execu-
tion. Optimising compilers analyse program code and infer static properties that
trigger program transformations as appropriate.

The effectiveness of static analysis, however, is essentially limited by two
aspects: Firstly, the quality of the analyses implemented in the compiler; and

* This work was supported by the European Union through the FP-7 project AD-
VANCE (Asynchronous and Dynamic Virtualisation through Performance Analysis
to Support Concurrency Engineering), grant no. FP7 248828.

secondly, the availability of required information compile time. As an example
of a common compiler optimisation consider loop unrolling. Loop unrolling is
triggered by a compiler analysis that infers the trip count of the loop. The com-
piler then unrolls the loop if the trip count is below a given threshold. However,
even the best static analysis is bound to fail if the expression defining the trip
count depends on values that are unknown at compile time. For example, they
could be obtained from the execution environment at runtime (input), or they
may be determined by code located in a different compilation unit.

We propose an adaptive compilation framework for the data-parallel func-
tional array language SAC [1]. SAC advocates shape- and rank-generic program-
ming on multidimensional arrays, i.e. SAC supports functions that abstract from
the concrete shape (extent along dimensions) and even from the concrete rank
(number of dimensions) of argument arrays and that yield result arrays whose
shape and (!) rank are determined by the function itself. Depending on the
amount of compile time structural information the type system of SAC distin-
guishes three classes of arrays at runtime:

— Arrays of Known Shape (AKS)
where both rank and shape are statically available;
— Arrays of Known Dimensionality (AKD)
where the rank is statically available, but the concrete shape is computed
dynamically; and
— Arrays of Unknown Dimensionality (AUD)
where neither rank nor shape are known to the compiler.

We also call these arrays non-generic, shape-generic and rank-generic, respec-
tively.

From a software engineering point of view it is (usually) desirable to specify
functions on the most general input type(s) to maximise opportunities for code
reuse. Typical examples for rank-generic operations are extensions of scalar op-
erators (arithmetic, logical, relational, etc) to entire arrays in an element-wise
way or common structural operations like shifting and rotation along one or
multiple axes of an array. In fact, rank-generic functions prevail in the extensive
SAC standard library.

However, genericity comes at a price. In comparison to non-generic code the
runtime performance of equivalent operations is substantially lower for shape-
generic code and again substantially lower for rank-generic code [2]. The reasons
are manifold and their individual impact operation-specific, but three categories
can be identified notwithstanding: Firstly, generic runtime representations of ar-
rays need to be maintained, and generic code tends to be less efficient, e.g. no
static nesting of loops can be generated to implement a rank-generic multi-
dimensional array operation. Secondly, many of the SAC-compiler’s advanced
optimisations [3,4] are just not as effective for generic code because the neces-
sary code properties to trigger certain program transformations simply cannot
be inferred. Thirdly, in automatically parallelised code [5] many organisational
decisions must be postponed until runtime and the ineffectiveness of optimisa-

tions lead to excessive numbers of synchronisation barriers as well as superfluous
communication.

In order to reconcile the desires for generic code and high runtime perfor-
mance, the SAC-compiler aggressively specialises rank-generic code into shape-
generic code and shape-generic code into non-generic code. However, regardless
of the effort put into compiler analyses for rank and shape specialisation, this
approach is fruitless if the the necessary rank and shape information is simply
not available at compile time for whatever reason. Data may be read from a file
at runtime, or SAC code is called externally from a non-SAC environment via
the sacdc foreign language interface [6]. In particular the latter is more and more
common as we use SAC in conjunction with the component-based coordination
language S-Net [7].

To mitigate the negative effect of generic code on runtime performance where
specialisation is not an option for one or more of the aforementioned reasons,
we propose an adaptive compilation framework that incrementally adapts shape-
and rank-generic code to the concrete shapes and ranks used in a specific program
instantiation. Our approach is motivated by the observation that the number of
different array shapes that effectively appear in generic array code, although
theoretically unbounded, often is relatively small in practice.

What sets our adaptive compilation framework apart from existing just-in-
time compilation and dynamic optimisation/code tuning approaches is twofold.
Firstly, we dynamically adapt generic code to structural properties of the data it
operates on, whereas just-in-time compilation of byte code (or similar) aims at
adapting code to the execution environment, e.g. by generating native machine
code. The second and probably more far-reaching difference is that we inher-
ently assume a multicore execution environment where computing resources are
available in abundance and can often not completely exploited by a running
program in an efficient way. Although the SAC-compiler is equipped with very
effective implicit parallelisation technology [5], experience says that the differ-
ence between using 14 cores of a 16-core machine and using all cores for running
a given program is often marginal because the additional overhead for organising
parallel execution more and more outweighs the benefit with each core joining
in into collaborative execution. At this point we propose to set apart a small
(configurable) number of cores for the purpose of incrementally adapting the
binary code base to the array shapes actually appearing during a program run.
Our approach takes dynamic recompilation out of the critical path of an appli-
cation. This property is instrumental in using a heavy-weight, highly optimising
compiler like sac2c in an online setting.

The remainder of the paper is organised as follows. Section 2 provides a few
more details on the design of Single Assignment C. We present our ideas on
adaptive compilation in more detail in Section 3 and discuss implementation
issues in Section 4. Eventually, we browse through related work in Section 5 and
draw conclusions in Section 6.

2 SAC in a Nutshell

As the name “Single Assignment C” suggests, SAC leaves the beaten track of
functional languages with respect to syntax and adopts a C-like notation. This
is meant to facilitate familiarisation for programmers who rather have a back-
ground in imperative languages than in declarative languages. Core SAC is a
functional, side-effect free subset of C: we interpret assignment sequences as
nested let-expressions, branching constructs as conditional expressions and loops
as syntactic sugar for tail-end recursive functions; Details on the design of SAC
and the functional interpretation of imperative-looking code can be found in [1].
Despite the radically different underlying execution model (context-free substi-
tution of expressions vs. step-wise manipulation of global state), all language
constructs adopted from C show exactly the same operational behaviour as ex-
pected by imperative programmers. This allows programmers to choose their
favourite interpretation of SAC code while the compiler exploits the benefits of
a side-effect free semantics for advanced optimisation and automatic parallelisa-
tion [5].

rank: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

123 rank: 2
456 shape: [3,3]
789 data: [1,2,3,4,5,6,7,8,9]
rank: 1
[1,2,3,4,5,6] shape: [6]
data: [1,2,3,4,5,6]
rank: 0
42 shape: []
data: [42]

Fig. 1: Truly multidimensional arrays in SAC and their representation by data vector,
shape vector and rank scalar

On top of this language kernel SAC provides genuine support for process-
ing truly multidimensional and truly stateless/functional arrays advocating a
shape- and rank-generic style of programming. Conceptually, any SAC expres-
sion denotes an array; arrays can be passed to and from functions call-by-value.
A multidimensional array in SAC is represented by a rank scalar defining the
length of the shape vector. The elements of the shape vector define the extent of

the array along each dimension and the product of its elements defines the length
of the data vector The data vector contains the array elements (in row-major or-
der). Fig. 1 shows a few examples for illustration. Notably, the underlying array
calculus nicely extends to scalars, which have rank zero and the empty vector
as shape vector. Furthermore, we achieve a complete separation between data
assembled in an array and the structural information (rank and shape).

AUD Class:
int[#] rank: dynamic
shape: dynamic
AKD Class:
rank: static
shape: dynamic

AKS Class:

int int[1] .. int[42] .. int[1,1] .. int[3,7] .. rank:static
shape: static

Fig. 2: Three-level hierarchy of array types: arrays of unknown dimensionality (AUD),
arrays of known dimensionality (AKD) and arrays of known shape (AKS)

The type system of SAC (at the moment) is monomorphic in the element
type of an array, but polymorphic in the structure of arrays, i.e. rank and shape.
As illustrated in Fig. 2, each element type induces a conceptually unbounded
number of array types with varying static structural restrictions on arrays. These
array types essentially form a hierarchy with three levels. On the lowest level
we find non-generic types that define arrays of fixed shape, e.g. int[3,7] or
just int. On an intermediate level of genericity we find arrays of fixed rank,
e.g. int[.,.]. And on the top of the hierarchy we find arrays of any rank,
e.g. int[*]. The hierarchy of array types induces a subtype relationship, and
SAC supports function overloading with respect to subtyping.

SAC only provides a small set of built-in array operations. Essentially, there
are primitives to retrieve data pertaining to the structure and contents of arrays,
e.g. an array’s rank (dim(array)) or its shape (shape (array)). A selection facility
provides access to individual elements or entire subarrays using a familiar square
bracket notation: array[idzvec]. The use of a vector for the purpose of indexing
into an array is crucial in a rank-generic setting: if the number of dimensions of
an array is left unknown at compile time, any syntax that uses a fixed number
of indices (e.g. comma-separated) makes no sense whatsoever.

While simple (one-dimensional) vectors can be written just like in C and
other C-inspired languages, i.e. as a comma-separated list of expressions enclosed
in square brackets, any rank- or shape-generic array is defined by means of
WITH-loop expressions. In fact, the WITH-loop is a versatile SAC-specific array
comprehension or map-reduce construct. Since the ins and outs of WITH-loops

are not essential to know for reading the rest of the paper, we skip any detailed
explanation here and refer the interested reader to [1] for a complete account.

3 Adaptive Compilation Framework

The architecture of our adaptive compilation framework is sketched out in Fig. 3.
On the bottom of the figure we have an executable (binary) SAC program gen-
erated by our SAC compiler sac2c. It (generally) consists of binary versions of
shape-specific, shape-generic and rank-generic functions. Any shape-generic or
rank-generic function, however, is called indirectly through a dispatch function
that selects the correct instance of the function to be executed in the presence
of function overloading by the programmer and static function specialisation
by the compiler. This dispatch function serves as an ideal hook to add further
instances (specialisations) of functions created at runtime. Since adding more
and more instances also affects function dispatch itself, we need to change the
actual dispatch function whenever we add further instances. To achieve this we
no longer call the dispatch function directly, but through a pointer indirection
that allows us to exchange the dispatch function dynamically. We call this the
dispatch function registry.

Dynamic Specialisation <Mk with » | SAC
Controller Module
inspect link
and with Intermediate
retrieve update Code

‘ load

Dispatch SAC Compiler
Function gonerate
Registry
Code
A
file Io_okup
request dispatch
function
\4

C Executable Program >

Fig. 3: Architecture of our adaptive compilation framework

Before actually calling the dispatch function retrieved from the registry, we
also file a specialisation request in the specialisation request queue. Next to the

function name, the module name where the function originates from, etc, this
request contains the concrete shape parameters of all generic parameters of that
function. Queueing a specialisation request is a very lightweight operation. This
makes sure that the original program execution is delayed by adaptive recompi-
lation as little as possible.

In the same process that runs the executable program one thread is set apart
to run the dynamic specialisation controller. This is in charge of the main part of
the adaptive compilation infrastructure; it runs concurrently with the program
itself. The dynamic specialisation controller inspects the specialisation request
queue and retrieves specialisation requests as they appear. It first checks whether
the specialisation requested already exists or is currently in the process of being
constructed. If so, the request is just discarded. Otherwise, the dynamic special-
isation controller creates the (compiler-) intermediate representation of a new
SAC-module. This consists among others of an import-statement of the func-
tion symbol from the original module and specialisation directive to the compiler
generated from the specialisation request data.

The dynamic specialisation controller also links the binary executable with
the entire SAC-compiler sac2c, which already comes as a shared library. So,
having created the stub module, the dynamic specialisation controller effectively
turns itself into the SAC-compiler. As such, it now dynamically links with the
(compiled) module the function stems from and retrieves a partially compiled
intermediate representation of the function’s implementation and potentially
further dependent code from the binary of the module. This, again, exploits a
standard feature of the SAC module system that was originally developed to
support inter-module (compile time) optimisation [8].

Eventually, the SAC-compiler (with the help of a backend C compiler) gen-
erates another shared library containing binary versions of the specialised func-
tion(s) and one or more new dispatch function taking the new specialisations into
account in their decision. Following the completion of the SAC-compiler, the dy-
namic specialisation controller regains control. It still has two tasks to do before
attending to the next specialisation request. Firstly, it links the running process
with the newly created shared library. Secondly, it updates the dispatch function
registry with the new dispatch function(s) from that library. As a consequence,
any subsequent call to that function originating from the running program will
directly be forwarded to the specialised instance rather than the generic version
and benefit from (potentially) substantially higher runtime performance without
further overhead.

Our adaptive compilation framework is carefully designed such that the as-
sociated runtime overhead in the executable program is minimal. Essentially, it
boils down to an indirection in calling the dispatch function and the filing of a
specialisation request. All the remaining work is done concurrently to the exe-
cution of the program itself by one or more dynamic specialisation controllers.
Our assumption is that these run on different processors or cores and as such use
resources that would otherwise remain unused or whose exploitation for running

the program itself would at most have a marginally positive effect on overall
performance.

4 Implementation Aspects

For our prototype implementation, we have extended the existing SAC com-
piler and runtime system in three aspects. Firstly, we have modified the code
generation of the compiler to provide the required profiling information to the
specialisation controller. Secondly, we have implemented hooks in the compiler
that allow the specialisation controller to initiate the specialisation of requested
functions. And last but not least, we have implemented the specialisation con-
troller itself as part of the SAC runtime system.

To control the collection and reporting of runtime information, we have added
an additional flag to the compiler. The option -runtimespec will enable the
required extension to code generation. The produced executable differs from
standard executables in three main aspects. Firstly, we extend the dynamic
dispatch code that is generated for function applications where we cannot stat-
ically determine the matching instance. Additionally to dynamically choosing
the appropriate instance, the extended dispatch code communicates the actual
parameter shapes found at runtime to the specialisation controller. As functions
are always dispatched statically with respect to the base types of arguments,
this information mainly comprises the rank and dimensionality of each argu-
ment. Furthermore, we send the index into the global registry that corresponds
to the called function. This information is used two-fold: It allows us to later
identify which entry in the registry to update. More importantly, however, the
index can be used as a unique token to identify the function to specialise. We
use this token to lookup the information that is required in the communication
with the compiler.

Note here that we send that shape information blindly. In particular, we do
not perform any checks on whether a specialisation is actually necessary. To keep
the runtime overhead within the actual program as low as possible, we offload
these checks into the specialisation controller.

Secondly, we reroute all function applications via the central register. By
using the register instead of calling functions directly, we are able to dynamically
rebind function applications to updated implementations. All that is required is
an update to the function pointer in the registry.

Lastly, we have modified the static dispatch, as well. If no runtime special-
isation is requested, we usually dispatch a function call statically as soon as
we can identify a single matching instance. However, such instance could still
be relatively generic. For instance, a most-generic instance might be defined for
arguments of unknown dimensionality (AUD).

When using runtime specialisation, such a dispatch is not desirable. As we
use the dynamic dispatch code to trigger runtime specialisation, an application
that has been statically dispatched would never be optimised. Therefore, when
runtime specialisation is enabled, we only dispatch a function application stati-

cally if we were able to derive full shape knowledge for the arguments and the
matching instance is an exact match for those shapes. In those situations, no
further specialisation would be possible.

The second work package in our implementation, the special version of the
SAC compiler that creates new specialisations on the fly, turned out to require
only limited implementation effort. We mainly make use of existing compiler
features. The heavy lifting of creating the actual specialisations and updated
dynamic dispatch code is performed by the SAC module system [8]. To allow
for specialisation across module boundaries at compile time, SAC modules al-
ready contain, apart from the compiled binary, a condensed representation of
the definition of each function. We reuse the same information for the creation
of specialisations at runtime.

Furthermore, we use the ability of the SAC module system to extend func-
tions from a different module by new instances, forming an updated version of
the function in the current module.

Lastly, we use a language feature of the SAC-compiler, i.e. forced speciali-
sations, to express the runtime specialisation request at the language level. To
ensure that a function is specialised for certain argument types, the programmer
can simply provide the desired function signature prepended with the keyword
specialize. This will trigger a specialisation to that signature at compile time
of the module or program that contains the specialize directive.

As an example for the interplay of these three features during runtime spe-
cialisation, consider the following scenario: Assume we have a function add that
expects two arguments, yields one return value and is defined in module Math.
We now want to specialise this function for two arguments of type int [7]. This
can be achieved by the following regular SAC code:

module DynSpecl;

import Math : {add};

export : all;

specialize int[*] add(int[7] x, int[7] y);

First, we create a new container for the resulting extended function add in
form of the module DynSpecl. Note that the name is of no importance as long it
is unique. Next, we trigger the module system to load the existing instances of
the function add from its defining module Math by means of an import directive.
As we want to make the resulting instances available to the running program, we
flag them for export. Lastly, we add a specialize directive to ensure that the new
function add in module DynSpecl contains the desired instance for 7-element
integer vectors.

When the above sample code is compiled, the vanilla SAC compiler already
creates a new module with the desired instances. That new module can then be
used as new provider of the add function instead of the original Math module.

In particular, the new module can be used as source for further specialisations
of the function add. The same technique as in the above example can be applied
where yet another module is created that imports the existing instances from
the DynSpec1 module created in the first round of specialisation. Using the new
container, we can then add further additional instances.

All that remains to be done to exploit the existing machinery for runtime
specialisation is to create the above code, at least in form of an abstract syntax
tree in memory, start the compilation process and dynamically add the resulting
library. This functionality, amongst other bookkeeping, is implemented in the
specialisation controller.

In the simplest case, the controller dequeues a specialisation request, creates
the corresponding abstract syntax tree to trigger the specialisation, enacts the
compiler and collects back the updated library. That library is then dynamically
linked to the program and the global registry is updated.

However, as the augmented program submits specialisation requests blindly,
we might end up with many duplicate requests for specialisations that have
already been performed. To prevent useless specialisation runs, the controller
remembers requests it has acted upon and automatically disregards future re-
quests of the same kind. Using this technique, we ensure that each request is
only acted upon once. This guarantees that we at most one unnecessary special-
isation attempt in cases where the requested instance had already been created
statically.

As a further optimisation, to reduce the number of compiler runs, the con-
troller can block multiple specialisations of the same function into a single ab-
stract syntax tree. It suffices to include multiple specialize directives, one for
each specialisation request.

Lastly, as the controller has a global overview over the requests submitted
by the program over time, it can perform a form of frequency scheduling: Those
specialisation requests that are enqueued particularly often can be acted upon
first.

5 Related Work

A wealth of related work can be found in the area of runtime partial evaluation,
often also referred-to as dynamic specialisation. Systems such as Tempo [9, 10],
Fabius [11] or DyC [12] are based on user annotations which indicate to the
compiler where dynamic specialisations can be expected. These systems then
generate specific runtime specialisers leading to a staged compilation process.
This measure keeps the overhead introduced by the compilation at runtime low.
In contrast, our approach is based on the idea to specialise programs concur-
rently and asynchronously. This allows us to apply the full-fledged compiler to
an annotated source code.

Further related work concerns approaches that operate on the code that is
being executed. They typically analyse different instruction paths at runtime.

When it turns out that a certain path is used frequently, these paths are opimised
further.

Dynamo [13] and DynamoRio [14] both identify hot spots in programs. When
a hotspot has been identified execution is paused and optimised code is generated
for it. As interpreting is expensive Dynamo tries to store as many optimised
traces as possible in a trace cache. The next time a trace is executed dynamo
points it to the optimised code stored in its cache.

Another approach, ADORE (Adaptive Object code RE-optimisation) [15],
uses hardware performance monitoring to identify performance bottlenecks. Sim-
ilar to the approach presented in this paper, ADORE uses two threads: One
thread runs the application as it would have normally and the second thread
runs the optimisation functions. However, the optimisations performed in the
ADORE system primarily target insertions of data cache prefetching to improve
the cache behaviour in subsequent runs.

6 Conclusion

We have presented an adaptive compilation framework for generic array pro-
gramming that virtually achieves the quadrature of the circle: to program code
in a generic, reuse-oriented way abstracting from concrete structural properties
of the arrays involved, and, at the same time, to enjoy the runtime performance
characteristics of highly specialised code when it comes to program execution.

We are currently in the process of implementing the proposed compilation
framework in the SAC compiler sac2c. It is still too early at this stage to quantify
the benefits of the approach, and we postpone any detailed evaluation to future
work.

It does not take much to identify a wealth of research questions arising from
realising the proposed adaptive compilation framework. For example, given a
number of available cores, what is a profitable division of cores into one group of
cores that collaboratively execute the program and another group of cores that
run dynamic specialisation controllers.

Furthermore, it would be more than reasonable to complete more than one
specialisation request at a time, but rather take all such requests from the request
queue that have been filed since the previous specialisation round. Although the
dynamic invocation of the SAC-compiler is not on the ciritical path due to
running concurrently with the main program on different computing resources,
compiler runtimes are not completely irrelevant either. Therefore, it may be
useful to run the SAC-compiler with a different option set in these cases.

Last not least, dynamic specialisation only makes sense for functions that
actually benefit from the availability of more detailed structural information on
argument arrays. This definitely holds for computationally intensive functions,
but not so much, for example, for I/O-related functions. Identifying suitable
functions alone is an interesting future research question.

References

10.

11.

12.

13.

14.

15.

. Grelck, C., Scholz, S.B.: SAC: A functional array language for efficient multi-

threaded execution. International Journal of Parallel Programming 34 (2006)
383-427

Kreye, D.: A Compilation Scheme for a Hierarchy of Array Types. In Arts, T.,
Mohnen, M., eds.: Implementation of Functional Languages, 13th International
Workshop (IFL’01), Stockholm, Sweden, Selected Papers. Volume 2312 of Lecture
Notes in Computer Science., Springer-Verlag, Berlin, Germany (2002) 18-35
Grelck, C., Scholz, S.B.: SAC — From High-level Programming with Arrays to
Efficient Parallel Execution. Parallel Processing Letters 13 (2003) 401-412
Grelck, C., Scholz, S.B.: Merging compositions of array skeletons in SAC. Journal
of Parallel Computing 32 (2006) 507-522

Grelck, C.: Shared memory multiprocessor support for functional array processing
in SAC. Journal of Functional Programming 15 (2005) 353-401
Marcussen-Wulff, N., Scholz, S.B.: On Interfacing SAC Modules with C Programs.
In Mohnen, M., Koopman, P., eds.: 12th International Workshop on Implemen-
tation of Functional Languages (IFL’00), Aachen, Germany. Volume AIB-00-7 of
Aachener Informatik-Berichte., Technical University of Aachen (2000) 381-386
Grelck, C., Scholz, S.B., Shafarenko, A.: Asynchronous Stream Processing with
S-Net. International Journal of Parallel Programming 38 (2010) 38-67

Herhut, S., Scholz, S.B.: Towards Fully Controlled Overloading Across Module
Boundaries. In Grelck, C., Huch, F., eds.: 16th International Workshop on the
Implementation and Application of Functional Languages (IFL’04), Liibeck, Ger-
many, University of Kiel (2004) 395-408

Consel, C.: A general approach for run-time specialization and its application to
c. In: 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, St. Petersburg Beach, USA, ACM Press (1996) 145-156

Noel, F., Hornof, L., Consel, C., Lawall, J.L..: Automatic, template-based run-time
specialization: Implementation and experimental study. In: International Confer-
ence on Computer Languages, IEEE Computer Society Press (1998) 132-142
Leone, M., Lee, P.: Dynamic specialization in the fabius system. ACM Computing
Surveys 30 (1998)

Grant, B., Philipose, M., Mock, M., Chambers, C., Eggers, S.J.: An evaluation of
staged run-time optimizations in dyc. ACM SIGPLAN Notices 34 (1999) 293-304
Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: a transparent dynamic optimiza-
tion system. SIGPLAN Not. 35 (2000) 1-12

Bruening, D., Garnett, T., Amarasinghe, S.: An infrastructure for adaptive dy-
namic optimization. International Symposium on Code Generation and Optimiza-
tion (2003)

Lu, J., Chen, H., Yew, P.C., Hsu, W.C.: Design and implementation of a lightweight
dynamic optimization system. Journal of Instruction-Level Parallelism 6 (2004)
1-24

